BackgroundMyeloid-derived suppressor cells (MDSC) are a functional myeloid cell subset that includes myeloid cells with immune suppressive properties. The presence of MDSC has been reported in the peripheral blood of patients with several malignant and non-malignant diseases. So far, direct comparison of MDSC across different diseases and Centers is hindered by technical pitfalls and a lack of standardized methodology. To overcome this issue, we formed a network through the COST Action Mye-EUNITER (www.mye-euniter.eu) with the goal to standardize and facilitate the comparative analysis of human circulating MDSC in cancer, inflammation and infection. In this manuscript, we present the results of the multicenter study Mye-EUNITER MDSC Monitoring Initiative, that involved 13 laboratories and compared circulating MDSC subsets across multiple diseases, using a common protocol for the isolation, identification and characterization of these cells.MethodsWe developed, tested, executed and optimized a standard operating procedure for the isolation and immunophenotyping of MDSC using blood from healthy donors. We applied this procedure to the blood of almost 400 patients and controls with different solid tumors and non-malignant diseases. The latter included viral infections such as HIV and hepatitis B virus, but also psoriasis and cardiovascular disorders.ResultsWe observed that the frequency of MDSC in healthy donors varied substantially between centers and was influenced by technical aspects such as the anticoagulant and separation method used. Expansion of polymorphonuclear (PMN)-MDSC exceeded the expansion of monocytic MDSC (M-MDSC) in five out of six solid tumors. PMN-MDSC expansion was more pronounced in cancer compared with infection and inflammation. Programmed death-ligand 1 was primarily expressed in M-MDSC and e-MDSC and was not upregulated as a consequence of disease. LOX-1 expression was confined to PMN-MDSC.ConclusionsThis study provides improved technical protocols and workflows for the multi-center analysis of circulating human MDSC subsets. Application of these workflows revealed a predominant expansion of PMN-MDSC in solid tumors that exceeds expansion in chronic infection and inflammation.
In this study, it was aimed to investigate characteristics and intracellular delivery of two different-sized PLGA nanoparticles in ouzo region by considering number of nanoparticles. To determine the effect of formulation parameters on average particle size, Dil labeled nanoparticles were prepared using a three-factor, two-level full factorial statistical experimental design. PLGA (230.8 ± 4.32 nm) and PLGA (157.9 ± 6.16 nm) nanoparticles were obtained by altering polymer amount based on experimental design results and characterized. Same number of PLGA and PLGA nanoparticles per cell were applied onto HEK293 cells; then, cytotoxicity, uptake kinetics and mechanism were evaluated by flow cytometry and fluorescent microscopy. Also same weight of PLGA and PLGA nanoparticles were applied and cellular uptake of these nanoparticles was evaluated. It was found that PLGA nanoparticles had higher encapsulation efficiency and slower dye release compared to PLGA nanoparticles. When they were applied at same counts per cell, PLGA nanoparticles displayed faster and higher intracellular dye transfer than PLGA nanoparticles. On the other hand, PLGA appeared to be a more effective vehicle than PLGA when applied at the same weight concentration. It was also shown that for both nanoparticles, HEK293 cells employed macropinocytic, caveolae- and clathrin-mediated endocytic pathways.
Interferon (IFN)-γ is the major mediator of anti-tumor immune responses; nevertheless, cancer cells use intrigue strategies to alter IFN-γ signaling and avoid elimination. Understanding the immune regulatory mechanisms employed by acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) cells upon exposure to IFN-γ is critical for development of immunotherapy and checkpoint blockade therapy approaches. This study aims to explore the influence of myeloid maturation on IFN-γ-induced PD-L1 and PD-L2 expression and on pro-leukemogenic transcription factor STAT3 signaling in AML and MDS. Stimulation of myeloid blasts’ maturation by all-trans retinoic acid (ATRA) or 1α,25-dihydroxyvitamin D3 (vitamin D) increased the CD11b + fraction that expressed PD-1 ligands in response to IFN-γ. Intriguingly, STAT3 pathway was potently induced by IFN-γ and strengthened upon prolonged exposure. Nonetheless, STAT3-mediated atypical IFN-γ signaling appeared as a negligible factor for PD-L1 and PD-L2 expression. These negative influences of IFN-γ could be alleviated by a small-molecule inhibitor of STAT3, stattic, which also inhibited the upregulation of PD-L1. In conclusion, induction of myeloid maturation enhances the responsiveness of AML and MDS cells to IFN-γ. However, these malignant myeloid cells can exploit both STAT3 pathway and PD-1 ligands to survive IFN-γ-mediated immunity and maintain secondary immune resistance.
The presence of memory T cells in COVID-19 patients has been acknowledged, however the functional potency of memory responses is critical for protection. In this study, naïve, effector, effector memory, and central memory CD4 + and CD8 + T cells obtained from the COVID-19 survivors were re-exposed to autologous monocyte-derived DCs that were loaded with SARS-CoV-2 spike glycoprotein S1. Proliferation capacity, CD25, 4-1BB, and PD-1 expression, and IFN-γ, IL-6, granzyme, granulysin, and FasL secretion were enhanced in CD4 + and CD8 + effector memory and central memory T cells. Albeit being at heterogeneous levels, the memory T cells from the individuals with COVID-19 history possess functional capacities to reinvigorate anti-viral immunity against SARS-CoV-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.