[1] In southern and central Alaska the subduction and active volcanism of the Aleutian subduction zone give way to a broad plate boundary zone with mountain building and strike-slip faulting, where the Yakutat terrane joins the subducting Pacific plate. The interplay of these tectonic elements can be best understood by considering the entire region in three dimensions. We image three-dimensional seismic velocity using abundant local earthquakes, supplemented by active source data. Crustal low-velocity correlates with basins. The Denali fault zone is a dominant feature with a change in crustal thickness across the fault. A relatively high-velocity subducted slab and a low-velocity mantle wedge are observed, and high V p /V s beneath the active volcanic systems, which indicates focusing of partial melt. North of Cook Inlet, the subducted Yakutat slab is characterized by a thick low-velocity, high-V p /V s crust. High-velocity material above the Yakutat slab may represent a residual older slab, which inhibits vertical flow of Yakutat subduction fluids. Alternate lateral flow allows Yakutat subduction fluids to contribute to Cook Inlet volcanism and the Wrangell volcanic field. The apparent northeast edge of the subducted Yakutat slab is southwest of the Wrangell volcanics, which have adakitic composition consistent with melting of this Yakutat slab edge. In the mantle, the Yakutat slab is subducting with the Pacific plate, while at shallower depths the Yakutat slab overthrusts the shallow Pacific plate along the Transition fault. This region of crustal doubling within the shallow slab is associated with extremely strong plate coupling and the primary asperity of the M w 9.2 great 1964 earthquake.
Many studies are ongoing within Alaska's most populous city to understand better its unique seismogenic setting as well as its seismic hazard and risk. With its relative proximity to the Aleutian megathrust subduction zone and other earthquake sources, Anchorage has been subjected to regular earthquakes, including the 1964 Great Alaska earthquake. In 2004, a downhole array was installed near downtown Anchorage within the Bootlegger Cove Formation, which was responsible for much of the ground failure during the 1964 earthquake. This study provides new information regarding the downhole array and the dynamic soil properties found at the array site. Shearand compression-wave velocities were measured at the site. Evaluation of the transfer function of the new velocity model is compared with the measured response at the site. In addition, several comparisons are performed utilizing nearby historic cone penetration test (CPT) and standard penetration test (SPT) data measured during installation of the deepest accelerometer at the site. A significant improvement in the theoretical modeling of the site is achieved utilizing the new shear-wave velocity profile.
This paper deals with the site response (SR) in the Anchorage basin in south-central Alaska. The investigation is based on the analysis of seismograms of 114 earthquakes recorded by 22 weak-motion stations and 46 earthquakes recorded by 19 strong-motion stations in the study area. We have computed SR for 41 sites, using standard spectral ratio and horizontal-to-vertical spectral ratio methods in the frequency range from 0.5 to 11 Hz. Based on these results, we have calculated band-average site response values in two frequency ranges: low frequency (from 0.5 to 2.5 Hz) and high frequency (from 3 to 7 Hz). There is a good correlation between SR values and surficial geology of the Anchorage area in the low-frequency range. SR values increase by a factor of three from the foothills of the Chugach Mountains in the east to the west towards the deeper part of the basin. The highest site response values (SR>2.5) in the same frequency range are observed in the west-central part of the city, which is underlain by cohesive facies of the Bootlegger Cove formation. The SR has a good correlation with the uppermost 30-m time-average shear-wave velocity with a correlation coefficient of 0.82. Moreover, the low-frequency SR values are close to the NEHRP site coefficients for 1 sec. However, high-frequency SR values lack correlation with 30-m average shear-wave velocity and short-period NEHRP site coefficients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.