Introduction-The physiologic importance of fast CO 2 /HCO 3 interconversion in various tissues requires the presence of carbonic anhydrase (CA, EC 4.2.1.1). Fourteen CA isozymes are present in humans, all of them being used as biomarkers. Area covered-A great number of patents and articles were focused on the use of CA isozymes as biomarkers for various diseases and syndromes in the recent years, in an ascending trend over the last decade. The review highlights the most important studies related with each isozyme and covers the most recent patent literature. Expert opinion-The CAs biomarker research area expanded significantly in recent years, shifting from the predominant use of CA IX and CA XII in cancer diagnostic, staging and prognosis towards a wider use of CA isozymes as disease biomarkers. CA isozymes are currently used either alone, in tandem with other CA isozymes and/or in combination with other proteins for the detection, staging and prognosis of a huge repertoire of human dysfunctions and diseases, ranging from mild transformation of the normal tissues to extreme shifts in tissue organization and function. The techniques used for their detection/quantitation and the state-of-the art in each clinical application are presented through relevant clinical examples and corresponding statistical data.
Hypoxia is a common feature of solid tumors contributing to resistance to chemotherapy. Selective delivery of chemotherapeutic drugs to hypoxic tumor niche remains an unsolved issue. For this purpose, we constructed a gold nanoplatform targeting carbonic anhydrase IX (CA IX) epitope, which is overexpressed in hypoxic tumor cells versus in normal tissues. We designed compatible low-molecular weight carbonic anhydrase inhibitor (CAI) ligands and doxorubicin (Dox) ligands and optimized protocols for efficient decoration of gold nanoparticles (Au NPs) to achieve both good targeting ligand density and optimum drug loading, while preserving colloidal stability. The optimized Dox-HZN-DTDP@Au NPs-LA-PEG2000-CAI (THZN) nanoplatform was proved to be very efficient toward killing HT-29 tumor cells, especially under hypoxic conditions, as compared with the nontargeting nanoplatform. This also mediated the effective release of doxorubicin in the lysosomes following internalization, as revealed by confocal microscopy. Furthermore, using tumor spheroids as a representative model for hypoxic solid tumors, our THZN nanoplatform enhanced the selective delivery of doxorubicin up to 2.5 times and minimized chemoresistance, showing better tumor drug penetration as compared to that in free drug treatment. Our technology is the first CA IX-targeting gold nanoplatform for efficient delivery of doxorubicin to hypoxic tumors in a controlled fashion, with the perspective to improve the therapy of solid tumors and minimize chemoresistance.
Carbonic anhydrase (CA) plays a key role in neuronal signaling, providing bicarbonate and proton ions for GABAergic and glutamatergic neuronal function. Activation of CA isoforms expressed in neurons have been shown to have implications in the prognosis of Alzheimer's disease and dementia, while inhibitors of CAs are clinically used in the treatment of epilepsy, emphasizing the importance of this family of enzymes in both disease and normal neuronal function. Previously, compounds have been reported to enhance activity of CAs in an aging rat model, but their mechanism of action was not known. We report the 1.6 Å resolution structure of an imidazole-based CA activator in complex with the ubiquitously-expressed human CA II. Based on the structure, a proposed mechanism of CA activation by the compound and its potential applications in the neurobiology of aging are discussed.
Hypoxic tumors overexpress membrane-bound isozymes of carbonic anhydrase (CA) CA IX and CA XII, which play key roles in tumor pH homeostasis under hypoxia. Selective inhibition of these CA isozymes has the potential to generate pH imbalances that can lead to tumor cell death. Since these isozymes are dimeric, we designed a series of bifunctional PEGylated CA inhibitors (CAIs) through the attachment of our preoptimized CAI warhead 1,3,4-thiadiazole-2-sulfonamide to polyethylene glycol (PEG) backbones with lengths ranging from 1 KDa to 20 KDa via a succinyl linker. A detailed structure−thermal properties and structure–biological activity relationship study was conducted via differential scanning calorimetry (DSC) and via viability testing in 2D and 3D (tumor spheroids) cancer cell models, either CA IX positive (HT-29 colon cancer, MDA-MB 231 breast cancer, and SKOV-3 ovarian cancer) or CA IX negative (NCI-H23 lung cancer). We identified PEGylated CAIs DTP1K 28, DTP2K 23, and DTP3.4K 29, bearing short and medium PEG backbones, as the most efficient conjugates under both normoxic and hypoxic conditions, and in the tumor spheroid models. PEGylated CAIs did not affect the cell viability of CA IX-negative NCI-H23 tumor spheroids, thus confirming a CA IX-mediated cell killing for these potential anticancer agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.