Abstract-The high index contrast silicon-on-insulator platform is the dominant CMOS 1 compatible platform for photonic integration. The successful use of silicon photonic chips in optical communication applications has now paved the way for new areas where photonic chips can be applied. It is already emerging as a competing technology for sensing and spectroscopic applications. This increasing range of applications for silicon photonics instigates an interest in exploring new materials, as silicon-oninsulator has some drawbacks for these emerging applications, e.g. silicon is not transparent in the visible wavelength range. Silicon nitride is an alternate material platform. It has moderately high index contrast, and like silicon-on-insulator, it uses CMOS processes to manufacture photonic integrated circuits. In this paper, the advantages and challenges associated with these two material platforms are discussed. The case of dispersive spectrometers, which are widely used in various silicon photonic applications, is presented for these two material platforms.
There is a rapidly growing demand to use silicon and silicon nitride (Si 3 N 4 ) integrated photonics for sensing applications, ranging from refractive index to spectroscopic sensing. By making use of advanced CMOS technology, complex miniaturized circuits can be easily realized on a large scale and at a low cost covering visible to mid-IR wavelengths. In this paper we present our recent work on the development of silicon and Si 3 N 4 -based photonic integrated circuits for various spectroscopic sensing applications. We report our findings on waveguide-based absorption, and Raman and surface enhanced Raman spectroscopy. Finally we report on-chip spectrometers and on-chip broadband light sources covering very near-IR to mid-IR wavelengths to realize fully integrated spectroscopic systems on a chip.
Silicon does not emit light efficiently, therefore the integration of other light-emitting materials is highly demanded for silicon photonic integrated circuits. A number of integration approaches have been extensively explored in the past decade. Here, the most recent progress in this field is reviewed, covering the integration approaches of III-V-to-silicon bonding, transfer printing, epitaxial growth and the use of colloidal quantum dots. The basic approaches to create waveguide-coupled on-chip light sources for different application scenarios are discussed, both for silicon and silicon nitride based waveguides. A selection of recent representative device demonstrations is presented, including high speed DFB lasers, ultra-dense comb lasers, short (850nm) and long (2.3μm) wavelength lasers, wide-band LEDs, monolithic O-band lasers and micro-disk lasers operating in the visible. The challenges and opportunities of these approaches are discussed.
Optical phased arrays are a promising beam-steering technology for ultra-small solid-state lidar and free-space communication systems. Long-range, high-performance arrays require a large beam emission area densely packed with thousands of actively phase-controlled, power-hungry light emitting elements. To date, such large-scale phased arrays have been impossible to realize since current demonstrated technologies would operate at untenable electrical power levels. Here we show a multi-pass photonic platform integrated into a large-scale phased array that lowers phase shifter power consumption by nearly 9 times. The multi-pass structure decreases the power consumption of a thermo-optic phase shifter to a P π of 1.7 m W / π without sacrificing speed or optical bandwidth. Using this platform, we demonstrate a silicon photonic phased array containing 512 actively controlled elements, consuming only 1.9 W of power while performing 2D beam steering over a 70 ∘ × 6 ∘ field of view. Our results demonstrate a path forward to building scalable phased arrays containing thousands of active elements.
Abstract:In the paper, we review our work on heterogeneous III-V-on-silicon photonic components and circuits for applications in optical communication and sensing. We elaborate on the integration strategy and describe a broad range of devices realized on this platform covering a wavelength range from 850 nm to 3.85 μm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.