Abstract:In the paper, we review our work on heterogeneous III-V-on-silicon photonic components and circuits for applications in optical communication and sensing. We elaborate on the integration strategy and describe a broad range of devices realized on this platform covering a wavelength range from 850 nm to 3.85 μm.
We present the first III-V opto-electronic components transfer printed on and coupled to a silicon photonic integrated circuit. Thin InPbased membranes are transferred to an SOI waveguide circuit, after which a single-spatial-mode broadband light source is fabricated. The process flow to create transfer print-ready coupons is discussed. Aqueous FeCl 3 at 5 • C was found to be the best release agent in combination with the photoresist anchoring structures that were used. A thin DVS-BCB layer provides a strong bond, accommodating the post-processing of the membranes. The resulting optically pumped LED has a 3 dB bandwidth of 130 nm, comparable to devices realized using a traditional die-to-wafer bonding method.
Silicon is now firmly established as a high performance photonic material. Its only weakness is the lack of a native electrically driven light emitter that operates CW at room temperature, exhibits a narrow linewidth in the technologically important 1300-1600 nm wavelength window, is small and operates with low power consumption. Here, an electrically pumped all-silicon nano light source around 1300-1600 nm range is demonstrated at room temperature. Using hydrogen plasma treatment, nano-scale optically active defects are introduced into silicon, which then feed the photonic crystal nanocavity to enhance the electrically driven emission in a device via Purcell effect. A narrow (∆λ = 0.5 nm) emission line at 1515 nm wavelength with a power density of 0.4 mW/cm 2 is observed, which represents the highest spectral power density ever reported from any silicon emitter. A number of possible improvements are also discussed, that make this scheme a very promising light source for optical interconnects and other important silicon photonics applications.
In this article we describe a cost-effective approach for hybrid laser integration, in which vertical cavity surface emitting lasers (VCSELs) are passively-aligned and flip-chip bonded to a Si photonic integrated circuit (PIC), with a tilt-angle optimized for optical-insertion into standard grating-couplers. A tilt-angle of 10° is achieved by controlling the reflow of the solder ball deposition used for the electrical-contacting and mechanical-bonding of the VCSEL to the PIC. After flip-chip integration, the VCSEL-to-PIC insertion loss is -11.8 dB, indicating an excess coupling penalty of -5.9 dB, compared to Fibre-to-PIC coupling. Finite difference time domain simulations indicate that the penalty arises from the relatively poor match between the VCSEL mode and the grating-coupler.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.