Post COVID-19, mucormycosis occurred after the SARS-CoV-2 has rampaged the human population and is a scorching problem among the pandemic globally, particularly among Asian countries. Invasive mucormycosis has been extensively reported from mild to severe COVID -19 survivors. The robust predisposing factor seems to be uncontrolled diabetes mellitus, comorbidity and immunosuppression acquired through steroid therapy. The prime susceptive reason for the increase of mucormycosis cases is elevated iron levels in the serum of the COVID survivors. A panoramic understanding of the infection has been elucidated based on clinical manifestation, genetic and non- genetic mechanisms of steroid drug administration, biochemical pathways and immune modulated receptor associations. This review lime-lights and addresses the “What”, “Why”, “How” and “When” about the COVID-19 associated mucormycosis (CAM) in a comprehensive manner with a pure intention to bring about awareness to the common public as the cases are inevitably and exponentially increasing in India and global countries as well. The article also unearthed the pathogenesis of mucormycosis and its association with the COVID-19 sequela, the plausible routes of entry, diagnosis and counter remedies to keep the infection at bay. Cohorts of case reports were analysed to spotlight the link between the pandemic COVID-19 and the nightmare-mucormycosis.
Natural edible waxes mixed with plant oils, containing high levels of unsaturated
fatty acids (FAs), are known as oleogels. Oleogels are used for replacing
saturated FAs in animal-derived food with unsaturated FAs. However, the health
effects of edible waxes are not yet clearly defined. The purpose of this study
was to investigate the effect of FAs and natural waxes on the adipogenesis in
3T3-L1 cells. The 3T3-L1 cells were differentiated and treated with FAs and
waxes. These FAs [Palmitic acid (PA), Stearic acid (SA), Oleic acid (OA),
Linoleic acid (LA), and Alpha-linolenic acid (ALA)] and waxes [beeswax (BW) and
carnauba wax (CW)] were prepared at varying concentrations, and cell toxicity,
triglyceride accumulation, lipid droplets size, and distribution inside of cells
were determined. Adipogenic gene expression including
PPARγ
,
FASN
,
C/EBPα
,
SREBP-1
, and
CPT-1
was determined. Results showed that increasing the
concentration of FAs and waxes led to a decrease in the adipocyte cells
viability and metabolic performance. SA showed the highest level of triglyceride
accumulation (p<0.05), whereas ALA showed the lowest (p<0.05).
Both BW and CW at 3.0 ppm showed significantly higher lipid accumulation than in
the control and other groups (p<0.05). ALA had significantly
downregulated adipogenic gene expression levels, excluding those of
CPT-1
, compared to the other treatment groups
(p<0.05). Moreover, BW demonstrated similar adipogenic gene expression
levels as ALA compared to CW. Consequently, ALA and BW may have health benefits
by reducing adipogenesis and can be used in processed meat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.