The CPP-like plant‐specific transcription factor has a prominent role in plant development and growth through cell division and differential activities. However, little information is available about the CPP gene family in Triticum aestivum L. Herein, we identified 37 and 11 CPP genes in the wheat and rice genome databases, respectively. The phylogeny of the CPP protein-like family members was further divided into five subfamilies based on structural similarities and phenotypic functional diversities. The in silico expression analysis showed that CPP genes are highly expressed in some tissues, such as shoot apex, shoot, leaf, leaf sheath, and microspore. Furthermore, the qRT-PCR found higher expression for TaCPP gene family members in leaf, leaf blade, young spike, mature spike, and differential expression patterns under abiotic stresses, including heat, drought, salt, and hormonal treatment, such as indole acetic acid and 1-aminocyclopropane-1 carboxylic acid. We found that CPP gene family members are mostly located in the nucleus after infiltrating the CPP5-1B-GFP and TaCPP11-3B-GFP into tobacco leaves. The overexpression of the TaCPP5-1D gene revealed that the CPP gene positively regulates the germanium, shoot, and root activities in Arabidopsis. The TaCPP5-1D-overexpressed plants showed less anti-oxidative sensitivity under drought stress conditions. These results demonstrated that TaCPP5-1D protein has a crucial contribution by interacting with TaCPP11-3B protein in maintaining stress homeostasis under the natural and unfavorable environmental conditions for growth, development, and stress resistance activities. Therefore, this study could be used as pioneer knowledge to further investigate the function of CPP genes in plant growth and development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.