When thin-walled hollow elastic spheres are compressed between two parallel rigid surfaces, there is an initial flattening of the sphere in the contact regions, followed by a snap-through buckling of the flattened surface. As the compression increases the sphere undergoes further buckling modes as a number of ridges and folds are formed. This elastic buckling deformation is investigated using a finite element analysis (FEA) technique. It is shown that the ratio of displacement at buckling to wall thickness depends weakly not only on Poisson's ratio, ν, but also on the ratio of the geometric wall thickness, h, to sphere radius, R. This approach is validated by comparison with experimental compression results on microspheres of approximately 40 µm in diameter to table tennis balls with a diameter of 40 mm.The analysis shows that a simple axial compression of a thin-walled hollow sphere can be used to measure both the average wall thickness of the sphere, from the deformation at the buckling snap-through, and the modulus from the force at this point. This provides a good technique to fully characterise the geometry and the elastic behaviour of thin-walled spheres of any size.
Aspects of the mechanical behavior of filled vulcanizates are reviewed with reference to existing mathematical models. The basic equations of the triboelastic theory, previously described by Turner, are derived. A standard triboelastic solid (STS) three parameter model, analogous to the standard linear solid, is described and a computationally efficient approximation developed. Comparisons are made between the predictions of the STS model and the behavior of testpieces of heavily filled natural rubber vulcanizates when subjected to simple and to complex deformation histories at various frequencies; the model is found to give a satisfactory representation of material behavior. Limitations of the STS model are also discussed.
Tests have been performed on animal models shortly post-mortem and on a healthy human subject in order to obtain estimates of the forces which act on suprapubic urinary catheters and similar devices and to develop an abdominal wall simulator. Such data and test methods are required for the systematic design of suprapubic devices because of the dual need to maintain the functionality of devices and to avoid excessive pressure on soft body tissue which could lead to ischaemia and in turn necrosis. In the post-mortem animal models, electrical excitation was applied to the abdominal wall in order to stimulate muscle activity. Two types of transducers were used: a soft membrane transducer (SMT) for pressure measurement and novel instrumented 'tongs' to determine indentation stiffness characteristics in the suprapubic track or artificial pathway created for a device. The SMT has been extensively used in the urethras and bladders of human subjects while the tongs were built specifically for these tests. Only the well-established SMT was used with the human subject; a peak pressure of 22 kPa was obtained. In the animal models the pressure profile given by the SMT had a peak whose position corresponded well with the estimated location of the rectus muscle measured on the fixed tissue section. The peak value was 5.5 kPa, comparable with values likely to cause necrosis if maintained for more than 1 day. Remarkably consistent indentation stiffness values were obtained with the instrumented tongs; all values were close to 0.45 N/mm (33 kPa/mm).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.