The negative-U impurity stripes confining the edge channels of semiconductor quantum wells are shown to allow the effective cooling inside in the process of the spin-dependent transport. The aforesaid promotes also the creation of composite bosons and fermions by the capture of single magnetic flux quanta on the edge channels under the conditions of low sheet density of carriers, thus opening new opportunities for the registration of the quantum kinetic phenomena in weak magnetic fields at high temperatures up to the room temperature. As a certain version noted above we present the first findings of the high temperature de Haasvan Alphen, 300K, and quantum Hall, 77K, effects in the silicon sandwich structure that represents the ultra-narrow, 2 nm, p-type quantum well (Si-QW) confined by the delta barriers heavily doped with boron on the n-type Si (100) surface. These data appear to result from the low density of single holes that are of small effective mass in the edge channels of p-type Si-QW because of the impurity confinement by the stripes consisting of the negative-U dipole boron centers which seems to give rise to the efficiency reduction of the electron-electron interaction.
The negative-U impurity stripes confining the edge channels of semiconductor quantum wells are shown to allow the effective cooling inside in the process of the spin-dependent transport, with the reduction of the electron-electron interaction. The aforesaid promotes also the creation of composite bosons and fermions by the capture of single magnetic flux quanta on the edge channels under the conditions of low sheet density of carriers, thus opening new opportunities for the registration of the quantum kinetic phenomena in weak magnetic fields at high-temperatures up to the room temperature. As a certain version noted above we present the first findings of the high temperature de Haas-van Alphen, 300 K, quantum Hall, 77 K, effects as well as quantum conductance staircase in the silicon sandwich structure that represents the ultra-narrow, 2 nm, p-type quantum well (Si-QW) confined by the delta barriers heavily doped with boron on the n-type Si (100)
Multiple interconversions of E' centers and peroxy radicals have been observed for the first time by means of anneal-interrupted x-irradiation experiments. It is shown that each of these defects can serve as the precursor of the other; under thermal anneal an E' center can convert to a peroxy radical due to the capture of an oxygen molecule, and under irradiation the peroxy radical can covert to an E' center due to irradiation-induced release of oxygen. The results for the defect production and anneal behavior are well described in terms of simple stretched-exponential defect-reaction kinetics.Radiation-induced defects in wide-gap materials such as ionic crystals, quartz, and oxide glasses have a significant effect on their electronic and optical properties [1,2].It has been established that Frenkel-type defect pairs are produced by ionizing radiation in both types of materials. In high purity crystalline and amorphous silicon dioxide, and silica-based optical fibers, the most important radiation-induced defects are the E' center (an unpaired spin on a three-coordinated silicon atom, =Si~) and oxygen hole centers (an unpaired spin on a nonbridging oxygen atom, -= Si -0, or a peroxy radical, -= Si -0 -Oi) [3 -8]. The E' center can be considered as a relaxed and recharged oxygen vacancy, and the per-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.