В настоящей работе рассматривается линейное неоднородное сравнение
$$
ax-by\equiv t (\operatorname{mod}q)
$$
и доказывается верхняя оценка
для числа его решений. Здесь $a$, $b$, $t$ и $q$ -
данные натуральные числа, $x$ и $y$ - взаимно простые переменные
из заданного отрезка, такие что число $x/y$ раскладывается
в цепную дробь с неполными частными
из некоторого конечного алфавита $\mathbf{A}\subseteq\mathbb{N}$.
При $t=0$ аналогичная задача была решена ранее
в работе И. Д. Кана, при $\mathbf{A}=\mathbb{N}$ -
в оригинальной работе Н. М. Коробова. Кроме того,
в одном из новых вариантов постановки задачи на дробь $x/y$
накладывается также дополнительное ограничение
в виде линейного неравенства.
Библиография: 20 названий.
В настоящей работе доказаны новые теоремы об обращениях неравенства
Гeльдера, уточняющих известные ранее аналогичные обращения.
Библиография: 16 названий.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.