The shock compression of porous nickel from nanosized particles nNi was studied at a pressure range of 4–61 GPa. The average size of the nNi particles was 50 nm, and the porosity of the samples was 50%. Plane shock waves in the samples were generated by the impact of aluminum plates accelerated to velocities ranging from 0.8 to 5 km/s. Laser interferometry was used to monitor particle velocity histories at the interface between the samples and water or LiF windows. The data obtained at pressures below 8 GPa showed a complex shock wave profile with the formation of an elastic precursor wave. The shock Hugoniot and data on the expansion isentropes were obtained. The Hugoniot of nanosized nNi coincided within the experimental errors with the Hugoniot of micron-sized nickel. The Hugoniot calculated on the basis of the equation of state for porous nickel was in good agreement with that of experimental data. It has been established that in the middle pressure range (20–35 GPa), the expansion isentropes in the “pressure–particle velocity” coordinates become noticeably flatter with a significant increase in the particle velocity. The reason for this phenomenon is still unclear. An assumption was made about the onset of particle melting upon reaching pressures above 15 GPa.
The report presents a laser diagnostic system designed to analyze the behavior of a matter in extreme states and the propagation of shock waves. The research system consists of a pair of velocity interferometer systems for any reflector (VISAR), push pull and conventional VISARs, forming a vernier scheme. This configuration was designed for Angara-5-1 facility. Test experiments of metal plate acceleration using magnetic field were carried out. The velocities up to 6 km/s were obtained.
The first result of the developed hybrid system for measuring the mass velocity of a matter is presented in the article. It combines two methods, VISAR and PDV, to compensate for their shortcomings. The scheme of the measuring system and the results of the laboratory experiment are shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.