Abstract. We studied the noise spectra of molecule-free and molecule-containing mechanically controllable break junctions. Both types of junctions revealed typical 1/ f noise characteristics at different distances between the contacts with square dependence of current noise power spectral Ca, 87.15.hj, 85.65.+h.
In this paper, we investigate the structural properties of AlGaN/GaN heterostructures grown by metal organic chemical vapor deposition on sapphire substrates with different thicknesses using high-resolution x-ray diffraction and Raman scattering methods. We discuss the microscopic nature of spatial-inhomogeneous deformations and dislocation density in the structures. Microdeformations within mosaic blocks and the sizes of regions of coherent diffraction are determined. We reveal a gradient depth distribution of deformations in the mosaic structure of nitride layers, as well as at the interface regions of the sapphire substrate on the microscale level using confocal micro-Raman spectroscopy. We determine that an increase in substrate thickness leads to a reduction in dislocation density in the layers and an increase in the elastic deformations. The features of the block structure of nitrides layers are shown to have a significant influence on their elastic properties.
Single-walled carbon nanotube field-effect transistors ͑CNT-FETs͒ were characterized before and after gamma radiation treatment using noise spectroscopy. The results obtained demonstrate that in long channel CNT-FETs with a length of 10 m the contribution of contact regions can be neglected. Moreover, radiation treatment with doses of 1 ϫ 10 6 and 2 ϫ 10 6 rad allows a considerable decrease parallel to the nanotube parasitic conductivity and even the shift region with maximal conductivity to the voltage range of nearly zero gate voltage that improves the working point of the FETs. The Hooge parameters obtained before and after gamma radiation treatment with a dose of 1 ϫ 10 6 rad are found to be about 5 ϫ 10 −3. The parameters are comparable with typical values for conventional semiconductors.
Devices with metallic nanoconstrictions functionalized by organic molecules are promising candidates for the role of functional devices in molecular electronics. However, at the moment little is known about transport and noise properties of nanoconstriction devices of this kind. In this paper, transport properties of bare gold and molecule-containing tunable cross-section nanoconstrictions are studied using low-frequency noise spectroscopy. Normalized noise power spectral density (PSD) S /I dependencies are analyzed for a wide range of sample resistances R from 10 Ohm to 10 MOhm. The peculiarities and physical background of the flicker noise behavior in the low-bias regime are studied. It is shown that modification of the sample surface with benzene-1,4-dithiol molecules results in a decrease of the normalized flicker noise spectral density level in the ballistic regime of sample conductance. The characteristic power dependence of normalized noise PSD as a function of system resistance is revealed. Models describing noise behavior for bare gold and BDT modified samples are developed and compared with the experimental data for three transport regimes: diffusive, ballistic and tunneling. Parameters extracted from models by fitting are used for the characterization of nanoconstriction devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.