Methods are proposed for intensifying mass transfer in blow of steel in a ladle using acoustic vibrations. Industrial tests of blowing metal in a ladle using a lance and imposition of acoustic vibrations generated by an external acoustic radiator are described. An acoustic blow plug (ABP) containing a resonator of jet-acoustic vibrations is proposed for argon blow of steel in the ladle. Model studies and theoretical estimates of factors that contribute to intensification of mixing and decrease in the blow plug erosion are described. The results of industrial testing of blowing steel in a furnace-ladle plant using the ABP at the Severskii Pipe Works are presented.
The influence of the geometric dimensions of the cut core and the number and size of air gaps on the effective permeability was investigated. Using dimensional analysis, an equation was obtained that relates the permeability of the cut core to the simplest dimensionless combination of the mean magnetic flux length l, single air gap length lg1, the cross-sectional area S of the core, and gap number ng. Permeability calculated from the geometric parameters of the cut core was compared with the effective permeability obtained using a two-dimensional FEMM simulation. Simulation has shown that the equation derived from dimensional analysis provides the best fit. The influence of each significant parameters l, lg1, ng, and S on cut core permeability is demonstrated. Experimental results have shown that an equation derived from dimensional analysis can be used to predict cut core permeability. In this case, one should take into account the residual air gap that forms after cutting the core. A method for assessing the residual air gap is proposed.
This article presents the results of the study of the effect of annealing on the sheet resistivity and temperature coefficient of resistance (TCR) of resistive films obtained from targets of the Cr–Ni–Si system using magnetron sputtering. A diagram of the composition–sheet resistivity of the Cr–Ni–Si system films with a thickness of 100 nm is proposed. It was established that resistive films of the Cr–Ni–Si system deposited by magnetron sputtering on silicon semiconductor plates with a SiO2 sublayer with a thickness of 100 nm, have sheet resistivity up to 350 Ω/square. It is shown that it is necessary to determine their eutectic compositions for the manufacture of targets by casting. Calculations were carried out and it was established that eutectics of the Cr–Ni–Si system contain 36.4 and 38.5 at.% Ni, which is 4 to 6 times higher than in the PC series alloys of this system. Due to the high content of Ni sheet resistivity films of eutectic compositions with a thickness of 100 nm is in the range from 100 to 200 Ω/square. It was noted that it is necessary to develop new four-five-component alloys based on the Cr–Ni–Si system with the introduction of refractory (Mo, Nb) and rare-earth (La, Y) elements into it, in order to increase the sheet resistivity of films and to decrease the melting temperature of alloys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.