a b s t r a c tThis paper describes an approach to modeling U.S. forest sector market and trade impacts of expansion in domestic wood energy consumption under hypothetical future U.S. wood biomass energy policy scenarios. The U.S. Forest Products Module (USFPM) was created to enhance the modeling of the U.S. forest sector within the Global Forest Products Model (GFPM), providing a more detailed representation of U.S. regional timber supply and wood residue markets. Scenarios were analyzed with USFPM/GFPM ranging from a baseline 48% increase to a 173% increase in annual U.S. consumption of wood for energy from 2006 to 2030, while consumption of fuelwood in other countries was assumed to increase by around 65% in aggregate. Results indicate that expansion in wood energy consumption across the range of scenarios may have little impact on U.S. forest sector markets because most of the expansion can be supplied by logging residues that are presently not being utilized and also mill residues that will increase in supply with projected expansion in wood product output in the decades ahead. However, analysis also suggests that forest sector markets could be disrupted by expansion in wood energy if much higher levels of wood energy consumption occur, or if projected recovery in housing demand and wood product output does not occur, or if more restrictive constraints or higher costs are imposed on wood residue utilization.
Climate change will likely have significant effects on forest ecosystems worldwide. In Mediterranean regions, such as that in southwestern Oregon, USA, changes will likely be driven mainly by wildfire and drought. To minimize the negative effects of climate change, resource managers require tools and information to assess climate change vulnerabilities and to develop and implement adaptation actions. We developed an approach to facilitate development and implementation of climate change adaptation options in forest management. This approach, applied in a southwestern Oregon study region, involved establishment of a science-manager partnership, a science-based assessment of forest and woodland vulnerabilities to climate change, climate change education in multiple formats, hands-on development of adaptation options, and application of tools to incorporate climate change in planned projects. Through this approach, we improved local manager understanding of the potential effects of climate change in southwestern Oregon, and enabled evaluation of proposed management activities in the context of climatic stressors. Engaging managers throughout the project increased ownership of the process and outcomes, as well as the applicability of the adaptation options to on-the-ground actions. Science-management partnerships can effectively incorporate evolving science, regardless of the socio-political environment, and facilitate timely progress in adaptation to climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.