Application of the two-photon polymerization (2PP) technique for the fabrication of binary radial diffractive optical elements (DOEs) to form a bottle-like intensity distribution, or "light bottle," is studied. Computer modeling and fabrication of a binary DOE for the formation of the desired light distributions are realized. The results of scanning electron microscopy analysis of the diffractive relief produced by the 2PP technique and an investigation of the optical properties of the fabricated elements are presented.
Application of the two-photon polymerization (2PP) technique for the fabrication of submicron-size relief of radial binary diffractive optical elements (DOE's) is studied. Binary DOE's for the formation of special longitudinal intensity distribution (axial light segment) are realized. Interferometric investigations of the diffractive relief produced by the 2PP-technique and investigations of optical properties of the formed elements are presented. Results of computer simulations are in good agreement with the experimental observations.
Fabrication of submicron-height relief of threefocal diffractive lenses using two-photon polymerization is studied. Optical properties of the designed lenses are investigated theoretically and experimentally. The proposed design of the combined diffractive-refractive lenses is promising for the realization of three-focal optical ophthalmological implants with predetermined light intensity distribution between the foci. The realized three-focal optical element has a diameter size of 2.7 mm with the focal distances in the range of 27-34 mm.
We propose a method for designing multifocal diffractive lenses generating prescribed sets of foci with fixed positions at several different wavelengths. The method is based on minimizing the difference between the complex amplitudes of the beams generated by the lens microrelief at the design wavelengths, and the functions of the complex transmission of multifocal lenses calculated for these wavelengths. As an example, a zone plate generating three fixed foci at three different wavelengths was designed, fabricated, and experimentally investigated. The proof-of-concept experimental results confirm the formation of foci with fixed positions at the design wavelengths. The obtained results may find applications in the design and fabrication of novel multifocal contact and intraocular lenses with reduced chromatic effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.