The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor mainly expressed in the central nervous system of vertebrates. Activation of the MC4R leads to a decrease in food intake, whereas inactivating mutations are a genetic cause of obesity. The binding of agouti-related protein (AGRP) reduces not only agonist-stimulated cAMP production (competitive antagonist) but also the basal activity of the receptor, as an inverse agonist. Transgenic zebrafish overexpressing AGRP display increased food intake and linear growth, indicative of a physiological role for the melanocortin system in the control of the energy balance in fish. We report on the cloning, pharmacological characterization, tissue distribution, and detailed brain mapping of a sea bass (Dicentrarchus labrax) MC4R ortholog. Sea bass MC4R is profusely expressed within food intake-controlling pathways of the fish brain. However, the activity of the melanocortin system during progressive fasting does not depend on the hypothalamic/pituitary proopiomelanocortin (POMC) and MC4R expression, which suggests that sea bass MC4R is constitutively activated and regulated by AGRP binding. We demonstrate that AGRP acts as competitive antagonist and reduces MTII-induced cAMP production. AGRP also decreases the basal activity of the receptor as an inverse agonist. This observation suggests that MC4R is constitutively active and supports the evolutionary conservation of the AGRP/MC4R interactions. The inverse agonism, but not the competitive antagonism, depends on the presence of a phosphodiesterase inhibitor (IBMX). This suggests that inverse agonism and competitive antagonism operate through different intracellular signaling pathways, a view that opens up new targets for the treatment of melanocortin-induced metabolic syndrome.
SUMMARYThe melanocortin 5 receptor (MC5R) plays a key role in the regulation of exocrine secretion in mammalian species. This receptor has also been characterized in some fish species but its function is unknown. We report the molecular and pharmacological characterization, as well as the tissue expression pattern, of sea bass MC5R. Cloning of five active alleles showing different levels of sensitivity to endogenous melanocortin and one non-functional allele demonstrate the allelic complexity of the MC5R locus. The sea bass receptor was activated by all the melanocortins tested, with ACTH and desacetyl-MSH and -MSH showing the lowest efficiency. The acetylation of the MSH isoforms seems to be critical for the effectiveness of the agonist. Agouti-related protein had no effect on basal or agonist-stimulated activation of the receptor. SbMC5R was mainly expressed in the brain but lower expression levels were found in several peripheral tissues, including liver. Progressive fasting did not induce up-or downregulation of hypothalamic MC5R expression, suggesting that central MC5R is not involved in the regulation of food intake in the sea bass. MTII, a sbMC5R agonist, stimulated hepatic lipolysis in vitro, measured as free fatty acid release into the culture medium after melanocortin agonist exposure of liver fragments, suggesting that MC5R is involved in the regulation of hepatic lipid metabolism. Taken together, the data suggest that different allelic combinations may confer differential sensitivity to endogenous melanocortin in tissues where MC5R is expressed and, by extension, in hepatic lipid metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.