Magnonics is a budding research field in nanomagnetism and nanoscience that addresses the use of spin waves (magnons) to transmit, store, and process information. The rapid advancements of this field during last one decade in terms of upsurge in research papers, review articles, citations, proposals of devices as well as introduction of new sub-topics prompted us to present the first Roadmap on Magnonics. This a collection of 22 sections written by leading experts in this field who review and discuss the current status besides presenting their vision of future perspectives. Today, the principal challenges in applied magnonics are the excitation of sub-100 nm wavelength magnons, their manipulation on the nanoscale and the creation of sub-micrometre devices using low-Gilbert damping magnetic materials and its interconnections to standard electronics. To this end, magnonics offers lower energy consumption, easier integrability and compatibility with CMOS structure, reprogrammability, shorter wavelength, smaller device features, anisotropic properties, negative group velocity, non-reciprocity and efficient tunability by various external stimuli to name a few. Hence, despite being a young research field, magnonics has come a long way since its early inception. This Roadmap asserts a milestone for future emerging research directions in magnonics, and hopefully, it will inspire a series of exciting new articles on the same topic in the coming years.
We report the development of a hybrid numerical / analytical model capable of mapping the spatially-varying distributions of the local ferromagnetic resonance (FMR) frequency and dynamic magnetic susceptibility in a wide class of patterned and compositionally modulated magnetic structures. Starting from the numerically simulated static micromagnetic state, the magnetization is deliberately deflected orthogonally to its equilibrium orientation, and the magnetic fields generated in response to this deflection are evaluated using micromagnetic software. This allows us to calculate the elements of the effective demagnetizing tensor, which are then used within a linear analytical formalism to map the local FMR frequency and dynamic magnetic susceptibility. To illustrate the typical results that one can obtain using this model, we analyze three micromagnetic systems boasting non-uniformity in either one or two dimensions, and successfully explain the spin-wave emission observed in each case, demonstrating the ubiquitous nature of the Schlömann excitation mechanism underpinning the observations. Finally, the developed model of local FMR frequency could be used to explain how spin waves could be confined and steered using magnetic non-uniformities of various origins, rendering it a powerful tool for the mapping of the graded magnonic index in magnonics.
TITLEMagnetic interfaces as sources of coherent spin waves AUTHORS Poimanov, VD; Kuchko, AN; Kruglyak, VV JOURNAL Physical Review B
DEPOSITED IN OREWe have developed a simple but general analytical theory that elucidates the mechanism of spin-wave generation from interfaces between ferromagnetic media pumped by a uniform microwave magnetic field. Our calculations show that, provided there is a finite coupling between the two media, the amplitude of the emitted spin waves depends linearly on the difference between their magnetic susceptibilities. The theory is successfully applied to interpret qualitatively three recent experimental studies in which such a spin-wave emission was observed. Furthermore, we describe how our approach can be extended to several more complicated spin-wave excitation schemes employing electric, elastic, and optical stimuli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.