We used a high-performance fluorescence imaging system to visualize rapid changes in intracellular free Ca(2+) concentration ([Ca(2+)](i)) evoked by focal applications of extracellular ATP to the hair bundle of outer hair cells (OHCs): the sensory-motor receptors of the cochlea. Simultaneous recordings of the whole-cell current and Calcium Green-1 fluorescence showed a two-component increase in [Ca(2+)](i). After an initial entry of Ca(2+) through the apical membrane, a second and larger, inositol triphosphate (InsP(3))-gated, [Ca(2+)](i) surge occurred at the base of the hair bundle. Electron microscopy of this intracellular Ca(2+) release site showed that it coincides with the localization of a unique system of endoplasmic reticulum (ER) membranes and mitochondria known as Hensen's body. Using confocal immunofluorescence microscopy, we showed that InsP(3) receptors share this location. Consistent with a Ca(2+)-mobilizing second messenger system linked to ATP-P2 receptors, we also determined that an isoform of G-proteins is present in the stereocilia. Voltage-driven cell shape changes and nonlinear capacitance were monitored before and after ATP application, showing that the ATP-evoked [Ca(2+)](i) rise did not interfere with the OHC electromotility mechanism. This second messenger signaling mechanism bypasses the Ca(2+)-clearance power of the stereocilia and transiently elevates [Ca(2+)](i) at the base of the hair bundle, where it can potentially modulate the action of unconventional myosin isozymes involved in maintaining the hair bundle integrity and potentially influence mechanotransduction.
Recent evidence suggests that the formation and permeability of tight junctions are actively regulated by second-messenger-generating systems involving G proteins and protein kinase C (PKC). A possible specific target for these regulatory proteins is the tight junction protein ZO-1. An extensive immunocytochemical study was performed in cultured epithelial monolayers of MDCK and Caco-2 cells to identify which isoforms of G proteins and PKC are present at or near zonula occludens complex. Antibodies against alpha-subunits of each one of the four major subfamilies were used for the localization of the G proteins. For the PKC localization, antibodies against eight different isoforms were used. In confluent monolayers, G alpha 12 and PKC zeta, were the only isoforms of these proteins at the cell borders. In subconfluent monolayers, G alpha 12 and PKC zeta were found at the plasma membrane only along the areas of lateral cell-cell contact. These isoforms formed a pattern of distribution very similar to the ZO-1 protein. The present findings indicate that G alpha 12 and PKC zeta may be part of the zonula occludens complex and may locally regulate formation and permeability of tight junctions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.