Republic of Serbia consumes about 15 million tons of equivalent oil per year (Mtoe). At the same time potential of the renewable energy sources is about 3,5 Mtoe/year. Main renewable source is biomass, with its potential of about 2,6 Mtoe/year, and 60% of the total biomass source is of agricultural origin. Mainly, that type of biomass is collected, transported and stored in form of bales. At the same time in one of the largest agricultural companies in Serbia (PKB) there are over 2000 ha of soya plantations, and also 4000 t/year of baled soya straw available, none of which being used for energy purposes. Therefore, efforts have been made in the Laboratory for Thermal Engineering and Energy of the "Vinca" Institute to develop a technology for utilizing bales of various sizes and shapes for energy production. Satisfactory test results of the 1 MW experimental facility - low CO levels and stable thermal output - led to the building-up of a 1.5 MW soya straw bales-fired hot water boiler, with cigarette type of combustion, for the purposes of greenhouse and office heating in the PKB. Further more, achieving good results in exploitation of that hot water boiler, the next step is building up the first combined heat and power (electricity) production facility (CHP), which will use agricultural biomass as a fuel, in Serbia.
In order to lay a foundation of a credible primary fragmentation model, a theoretical analysis of the thermo-mechanical processes in a devolatilizing solid fuel particle was carried out. The devolatilization model comprises heat transfer, chemical processes of generation of gaseous products of combustion (volatiles), volatile transfer, and solid mechanic processes. A spatial and temporal analysis of the stresses within the particle showed that the radial stress is caused primarily by the pressure of generated volatiles. This stress monotonously decreases from the particle center towards the particle surface, without changing its sign. The tangential stress is caused primarily by the thermal shock. Close to the surface, it changes its sign. In the particle cross-section, the radial stress prevails close to the particle center, whilst the tangential stress is dominant in the surface region. At the points where these stresses exceed the particle tensile strength, cracks occur. Cracks extend tangentially close to the surface, and radially close to the center of the particle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.