Amara communis larvae were found to develop significantly faster and to have higher growth rate at short-day (12 h) as compared to long-day (22 h) photoperiods at all used temperatures (16, 18, 20, and 22°С). The coefficient of linear regression of larval development rate on temperature was significantly higher at the short day than at the long day. The thermal developmental thresholds appeared similar at both photoperiods. Body weight of young beetles reared under different photoperiods was almost the same. Thus, photoperiod does not simply accelerate or decelerate insect development, but modifies the thermal reaction norm. At short days, larval development becomes faster and more temperature-dependent, which provides a timely completion of development at the end of summer. The analysis of literature data has allowed us to find the photoperiodic modification of thermal requirements for development in 5 insect orders: Orthoptera, Heteroptera, Coleoptera, Lepidoptera, and Diptera. Modification may result in significant changes in the slope of the regression line, and hence the sum of degree-days, and in the thermal developmental threshold. Consequently, the thermal requirements for development in many insects gradually vary during summer under the effect of changing day-length, which may have adaptive significance. Thus, the photoperiodic modification of thermal reaction norms acts as a specific form of seasonal control of insect development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.