We have measured the kinetic energy of positronium (Ps) atoms emitted into a vacuum from a porous silica film subsequent to positron bombardment, via the Doppler spread of the linewidth of the Ps 1 3 S-2 3 P transition. We find that the deeper in the target film that positrons are implanted the colder is the emitted Ps, an effect we attribute to cooling via collisions in the pores as the atoms diffuse back to the film surface. We observed a lower limit to the mean Ps kinetic energy associated with motion in the direction of the laser, E x = 42 ± 3 meV, that is consistent with conversion of the confinement energy of Ps in the 2.7-nm-diameter pores to kinetic energy in vacuum. An implication is that a porous sample would need to be composed of pores greater than around 10 nm in diameter in order to produce thermal Ps in vacuum with temperatures of less than 100 K. By performing Doppler spectroscopy on intense pulses of Ps we have experimentally demonstrated the production of many excited-state Ps atoms simultaneously, which could have numerous applications, including laser cooling and fundamental spectroscopic studies of Ps and the production of antihydrogen.
Long-lived |m|=1 positronium (Ps) atoms are produced in vacuum when high density bursts of positrons with net polarization p{0} are implanted into a porous silica film in a 2.3 T magnetic field. We observe a decrease in the |m|=1 population as the density of the incident positron beam is increased due to quenching interactions between oppositely polarized Ps atoms within the target. Saturation of this density dependent quenching indicates that the initial positron spin polarization p{0}=28+/-1%, and demonstrates the long term (10{2} s) survival of positron polarization in a Surko-type buffer gas trap. We conclude that, at high Ps densities, the minority spin component is essentially eliminated and the remaining Ps is almost entirely (approximately 96%) polarized, as required for the formation of a Ps Bose-Einstein condensate.
It is well known that ortho-positronium (ortho-Ps) atoms are emitted with high efficiency from various porous materials following the implantation of positrons. Since the ortho-Ps lifetime in a mesoporous material may be a substantial fraction of the ortho-Ps vacuum lifetime (142 ns), the time dependence of Ps emission may have to be considered when conducting certain types of experiments, such as time of flight measurements or pulsed ortho-Ps-laser interactions, when using this kind of target as a positronium source. By taking into account the positron implantation profile and subsequent Ps diffusion and decay in a mesoporous film we calculate the time dependent ortho-Ps emission rate (t), which in turn allows us to establish the total annihilation rate, arising from the decay of ortho-Ps both inside and outside the sample. Using time-delayed laser spectroscopy and single-shot lifetime measurements we have directly probed the rate at which Ps is emitted into vacuum from a target with ∼3-nm diameter pores and have observed delayed ortho-Ps emission that is consistent with our model. From the ortho-Ps decay spectrum we find that, whereas a simple two-component lifetime fit gives a short lifetime of 25.3 ± 0.3 ns, an analysis that properly takes into account the emission rate yields an ortho-Ps lifetime inside the porous material of 32.3 ± 1.2 ns, demonstrating that the ortho-Ps escape rate into vacuum can significantly modify the apparent lifetime of ortho-Ps inside a mesoporous material. Our measurements yield a Ps diffusion coefficient D = 0.07 ± 0.01 cm 2 s −1 , which is consistent with a tunneling limited diffusion process.
The use of rotating electric fields to control plasmas has found numerous applications in the manipulation and storage of antimatter. When used in strong magnetic fields plasma heating caused by the applied field is mitigated by cyclotron cooling, leading to an efficient broadband mode of compression known as the strong drive regime. We have found that it is possible to access the strong drive regime in a low field trap where cyclotron cooling is negligible and a gas is used for cooling, and we have been able to compress positron plasmas to more than 10% of the Brillouin density limit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.