With the use of the general variational principle of selforganization of systems with varying constraints, namely the principle of dynamical harmonization of systems presented in the first work of the cycle, we advance an approach to the control over the evolution of systems of many particles. The geometric nature of this principle is analyzed. On the basis of the de Broglie-Bohm representation of the Schrödinger equation, we establish a connection of the nonlocality and the coherence of the systems of many particles with mass entropic forces. The defining role of a coherent acceleration and a space-time curvature in the control over the synthesis of new structures in systems with varying constraints is demonstrated. The basic criteria for electromagnetic fields to initiate the processes of self-organizing synthesis and for the quantum properties of a nonlocality on macroscopic scales, which are necessary for the selforganizing synthesis, are formulated.4 Electrophysical aspects of the interactions of particles and radiation with vacuum 93 4.1 Resonances at the interaction of longitudinal waves with vacuum 95 4.2 Regularized wave equations as a model of vacuum . . . . . . . 101 4.3 Coherent acceleration of the reference system and criteria for the initiation of a collective synthesis .
We consider the influence of the Fermi statistics of nucleons on the binding energy of a new type of nuclear structures such as fractal nuclear clusters (fractal isomers of nuclei). It is shown that the fractal nuclear isomers possess a wide spectrum of binding energies that exceed, in many cases, the values known at the present time. The transition of the nuclear matter in the form of ordinary nuclei (drops of the nuclear fluid) in the state with the fractal structure or in the form of bubble nuclei opens new sources of energy and has huge perspectives. This transition is based on a new state of matter -collective coherently correlated state. It manifests itself, first of all, in the property of nonlocality of nuclear multiparticle processes. We develop a phenomenological theory of the binding energy of nuclear fractal structures and modify the Bethe-Weizsäcker formula for nuclear clusters with the mass number A, charge Z, and fractal dimension D f . The consideration of fractal nuclear isomers allows one to interpret the experimental results on a new level of the comprehension of processes of the nuclear dynamics. The possibility to determine the fractal dimension of nuclear systems with the help of the method of nuclear dipole resonance for fractal isomers is discussed. The basic relations for fractal electroneutral structures such as the electron-nucleus plasma of fractal isomers are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.