The cylindrical soil tillage roller was developed. In the process of experimental studies of the proposed roller for assessing the quality of tillage from the standpoint of compliance with the soil density agrotechnical requirements adopted coefficient of compliance with the standard kse. As a result of experimental studies, the parameters and modes of operation of the roller have been optimized, at which the required quality of tillage is achieved. Analysis of the mathematical models obtained showed that, after rolling with a cylindrical spiral roller, kse = 0.98 (corresponding to soil density ρ = 1185 ... 1215 kg / m3), which fully satisfies the agrotechnically specified limit of soil density at a seed embedment depth - 1100 ... 1300 kg / m3. The maximum value of kse = 0.98 is achieved when the speed of the unit is v = 11 km per hour, the ballast mass is mb=100 kg, and the turn of the spiral is l=40 mm. It was revealed that after treatment with a cylindrical-spiral soil-cultivating roller, the coefficient of compliance with the standard was kse=0.98, which is significantly higher compared to serial rollers (0.83 - after rolling the SZ-5.4 drill and 0.91 after processing the ring spur roller). When assessing the field surface alignment, it was found that after treatment with a cylindrical-spiral roller, the coefficient of uniformity kv was 0.95, which is respectively 7.1% and 14.2% more compared to the areas treated with annular-heel rollers and annular rollers of the SZ seeder -5.4. In the course of field studies on the experimental field of Ulyanovsk State Agrarian University, it was found that the yield of spring barley after surface treatment of the soil with a cylindrical-spiral roller exceeded by an average of three years for 7.4% and 10.3%, respectively, the yield of this crop after rolling with a KKSh-6 roller and SZ-5,4 seeder wheels. The economic effect of the introduction of the proposed rink due to the increase in yield reaches 1,800 ... 2,460 rubles per 1 hectare of spring barley.
The article presents a completely new design of a vibrating roller that has no analogues. To identify the main design and regime parameters that allow to ensure high-quality operation of the vibratory roller from the standpoint of compliance with the agrotechnical requirements for soil density and structure, we conducted field experiments, the results of which revealed that the maximum value of the optimization criterion k cэ = 0.81 is achieved at the unit speed ν = 11 km/h and rotational speed of unbalancers n = 800 min-1.
The article presents the results of experimental studies of a soil-cultivating vibratory roller, as a result of which adequate mathematical models were obtained from the standpoint of compliance with the reference values of the structural composition of the soil. According to the results of the research, it was revealed that the quality of rolling by the developed vibratory roller is 23.9% better than that of the serially produced roller KKZ-6. The optimal speed of movement of the unit and the frequency of rotation of unbalancers are also determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.