Abstract. The advantages of using a composite day analysis for all-sky interferometric meteor radars when measuring mean winds and tides are widely known. On the other hand, problems arise if this technique is applied to Hocking's (2005) gravity wave analysis for all-sky meteor radars. In this paper we describe how a simple change in the procedure makes it possible to use a composite day in Hocking's analysis. Also, we explain how a modified composite day can be constructed to test its ability to measure gravity wave momentum fluxes. Test results for specified mean, tidal, and gravity wave fields, including tidal amplitudes and gravity wave momentum fluxes varying strongly with altitude and/or time, suggest that the modified composite day allows characterization of monthly mean profiles of the gravity wave momentum fluxes, with good accuracy at least at the altitudes where the meteor counts are large (from 89 to 92.5 km). In the present work we also show that the variances measured with Hocking's method are often contaminated by the tidal fields and suggest a method of empirical correction derived from a simple simulation model. The results presented here greatly increase our confidence because they show that our technique is able to remove the tide-induced false variances from Hocking's analysis.
Equatorial E region electric fields (EEFs) inferred from coherent radar data, sporadic‐E (Es) layers observed from a digital ionosonde data, and modeling results are used to study the responses of the equatorial E region over São Luís (SLZ, 2.3°S, 44.2°W, ~−7° dip angle), Brazil, during the super storm of November 2004. The EEF is presented in terms of the zonal (Ey) and vertical (Ez) components in order to analyze the corresponding characteristics of different types of Es seen in ionograms and simulated with the E region ionospheric model. We bring out the variabilities of Ey and Ez components with storm time changes in the equatorial E region. In addition, some aspects of the electric fields and Es behavior in three cases of weak, very weak, and strong Type II occurrences during the recovery phase of the geomagnetic storm are discussed. The connection between the enhanced occurrence and suppressions of the Type II irregularities and the q‐type Es (Esq) controlled by electric fields, with the development or disruption of the blanketing sporadic E (Esb) layers produced by wind shear mechanism, is also presented. The mutual presence of Esq along with the Esb occurrences is a clear indicator of the secular drift of the magnetic equator and hence that of the equatorial electrojet (EEJ) over SLZ. The results show evidence about the EEJ and Es layer electrodynamics and coupling during geomagnetic disturbance time electric fields.
This study analyzes strong sporadic E layer (Es) formation in Boa Vista (BV, 2.8°N, 60.7°W, dip: 18°), a low‐latitude region in the Brazilian sector, which occurred far after the onset of a magnetic storm recovery phase. Such occurrences were observed during seven magnetic storms with available data for BV. Thus, the ionospheric behavior on days around the magnetic storm that occurred on 20 January 2016 was investigated to search for possible explanations. This analysis indicated that the probable mechanism acting during the Es layer strengthening is the zonal westward electric field caused by a disturbance dynamo. The same evidence was also observed in two other magnetic storms at the same location. Hence, a numerical model of the E region dynamics, called MIRE (Portuguese acronym for E Region Ionospheric Model), was used to confirm whether the disturbance dynamo could cause the Es layer intensification. The inputs for the model were the electric field deduced from the vertical drift and the wind components provided by GSWM‐00 model. The simulations indicate that the Es layer density is significantly enhanced when the zonal electric field is present compared to the reference scenario with only the winds. Therefore, it is concluded that the disturbance dynamo electric field is the likely cause of the strong Es layers in the analyzed cases. Finally, the combined results from the model and observational data seem to contribute significantly to advance our understanding of the role of the electric fields in the Es layer formation at low latitudes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.