The questions of the practical usage of the analytical scanning electron microscope JSM 600 LA by JEOL company (Japan) with EDS system -microanalysis for the studying of the ash elemental composition of seeds 9 breeds (Vegetable and Grain application) 4 species genus Amaranthus L. -A. hypochondriacus, A. cruentus, A. hybridus, A. caudatus, A. tricolor. Plant seeds by Federal center of vegetable production selection were envisaged. We studied the concentration of 14 basic elements (in weight %) contained in the mineral part of amaranth seeds. In the amaranth seeds of vegetable forms the accumulation order of the elements is the following: Ca >K >P >Mg >Si >Se >Fe >Mo ≈ S ≈ Cl ≈ Zn >Na >Al. In the seeds of the grain forms the order is different: К >P >Ca >Si >Se >Mg >Fe >Na >Mo >Cl ≈ S ≈ Mn ≈ Zn ≈ Al. The amaranth seeds of the grain forms are rich in macro -and microelements. P, K, Cl and S in the seeds of the grain forms are accumulated on 50, 37, 15 and 5% more and Si, Fe and Al in 2.6 and 1.8 times more than in the vegetable forms seeds. The breeds with the high concentration of the elements are recommended for using in the selection process. The elevated level of the essential macroand microelements such as Ca, K, P, Mg, Mo, S and Cl stipulates the perspective of the functional products creation on the base of the studied amaranth seeds for the enrichment of the food stuffs.
Antioxidant metabolites of plant origin are able to regulate many physiological functions of the body and reduce the risk of developing chronic diseases caused by free radical oxidation. Vegetable plants are the most affordable source of essential antioxidant metabolites lack of which leads to a sharp decrease in resistance to environmental stresses. Amaranth (Amaranthus tricolor L.) is a promising food and medicinal plant. Variety Valentina (originated by V.K. Gins, P.F. Kononkov, M.S. Gins, All-Russian Research Institute of Breeding and Seed Production of Vegetable Crops) was successfully introduced and grown in several Russian regions. Our objective was to study the composition and content of low-molecular biologically active antioxidant metabolites that determine the nutritional and pharmacological value of amaranth leaves, and to assess the main antioxidant accumulation in plant organs under the conditions of the Moscow Region. For analysis, fresh and dried leaves (juvenile, those with a formed blade, and old ones), inflorescences, stems, veins, petioles and roots were used. Amaranthine, reduced ascorbic acid, and total antioxidant content was measured in water and ethanol extracts from fresh and dry leaves and plant organs. Also, simple phenols and oxybenzoic acids, flavonoids, condensed and polymeric polyphenols were assayed. Chlorogenic, gallic, ferulic acids and arbutin content was determined in aqueous extract by high performance liquid chromatography (HPLC). The metabolites were analyzed by gas chromatography-mass spectrometry (GC/MS). It was shown that actively photosynthesizing leaves with a fully formed blade predominantly accumulated ascorbic acid, while in the aging leaves its amount decreased. Veins, petioles and stems contained substantially less metabolites with antioxidant activity compared to leaves. In aqueous extracts, the main betacyanins were amaranthine and iso-amarantine. Chromatography of aqueous extracts from amaranth leaves showed the presence of highly active antioxidants, e.g. arbutin-glucoside hydroquinone and oxycinnamic acids including ferulic, chlorogenic, oxybenzoic (gallic) acids. In the tests, gallic acid concentration was 1.51 µg/100 ml, chlorogenic acid concentration was 2.05 µg/100 ml, ferulic acid concentration was 0.01 µg/100 ml, and arbutin concentration was 472.51 µg/100 ml. Water-extracted squalene (C 30 H 50), a powerful antioxidant usually isolated from amaranth seeds only, was first discovered in amaranth leaves. Ethanol extraction revealed a greater number of the colored components in the spectral range of the 350-700 nm, in addition, gallic, chlorogenic and ferulic acids were found. A total of 37 low-molecular metabolites were identified by gas chromatography-mass spectrometry. Our findings indicate that vegetable amaranth, as a promising reproducible source of antioxidants, can be used in functional foods and phytobiologicals.
The fragmentary literature data on Apiaceae seed antioxidant potential elicited a comparative evaluation work of seed biochemical profile between 11 species and 43 cultivars grown in similar conditions: anise, lovage, fennel, coriander, caraway, parsley, celery, dill, carrot, parsnip and chervil. Among the different solvents, temperature and duration regimes applied, 70% EtOH, 80 °C and 1 h running showed the best extraction efficiency of antioxidants. Total antioxidant activity (AOA) decreased as follows: lovage > anise > parsley > celery > fennel = dill > coriander > caraway > parsnip > carrot > chervil. Lovage, anise and fennel demonstrated the highest levels of total phenolics (TP), AOA and potassium. A positive correlation was recorded between total dissolved solids (TDS) and K and between AOA and TP content (r = 0.86 and r = 0.79 respectively, at p < 0.001). Varietal differences in AOA and TP levels were much lower than those relevant to TDS, K and water soluble protein (WSP), while the highest differences were found for selenium (Se). Two parsley cultivars showed anomalously high Se content and four dill cultivars unusually high levels of TDS and potassium. A positive correlation arose between Se and WSP levels in parsley seeds (r = 0.85 at p < 0.05).
Natural potential of bioactive compounds accumulated by plants is often not taken into account in particular breeding. Biofortification, the enrichment of basic food crops with essential vitamins and minerals using breeding, is one of the most notable recent innovations in agriculture. In this paper, we studied pigment composition with regard to the amount of carotenoids and their contribution to fruit coloration in 20 accessions of different species of genus Capsicum. Red and yellow pigment levels and their ratios detected in the study were indicative of the carotenoid composition in fruits of each species. Also the varieties differed significantly in the carotenoid accumulation. In temperate climate of Moscow region the highest amount of pigments was found in the sweet variety Shokoladnyi (C. annuum; 0.536 mg/g), and in the spice varieties Purpurnyi tigr (C. annuum; 0.708 mg/g), Kitaiskii fonarik (C. baccatum; 0,685 mg/g), Ideya (C. annuum; 0.629 mg/g) and Chudo Podmoskov'ya (C. annuum; 0.628mg/g). The highest level of ascorbic acid was accumulated by chili pepper Ideya (C. annuum; 414 mg%), Rozhdestvenskii buket (C. annuum ½ C. frutescens; 370 mg%), Yubileinyi VNIISSOK (C. annuum; 326 mg%), and Ognennaya deva (C. chinense; 301 mg%). The ascorbic acid content did not depend on fruit color and plant species. Among the sweet pepper varieties high total antioxidant content (TAC) was characteristic of hybrid F 1 Oranzhevoe naslazhdenie (C. annuum). The maximum total antioxidant amounts, as milligram equivalents (MME) of gallic acid per g, were 2.82 for Rozhdestvenskii buket (C. annuum ½ C. frutescens), 2.65 for Ognennaya deva (C. chinense), 2.57 for Idea (C. annuum), and 2.19 for Kitaiskii fonarik (C. annuum). In assessment of thermostable antioxidants extracted with 80 % ethanol at 60 С it was shown that the unstable antioxidants, mainly ascorbic acid, averaged 16 % of the total antioxidants. Rozhdestvensciy buket, Kitaiskii fonarik, Purpurnyi tigr, Ognennaya deva plants, additionally to antioxidants, can accumulate one of the strongest natural antioxidant, the capsaicin, which determines their hot taste. The capsaicin content of the studied chili peppers varied from 1.36 to 9.57 mg/g of dry weight. High contents of carotenoids, ascorbic acid and TAC combined with capsaicin at 8 to 9 score points increase the total antioxidant capacity of these samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.