SummaryIn a case-control study, fasting total homocysteinemia was determined in 208 consecutive outpatients who underwent phlebography because of the first episode of clinically suspected deep-vein thrombosis (DVT) of lower limbs. Contrast venography confirmed the clinical suspicion in 60 patients (28.8%). Hyperhomocysteinemia was detected in 15 of the 60 patients with DVT (25.0%), and in 17 of the 148 subjects without thrombosis (11.5%; p = 0.025). The OR for having an acute DVT in patients with hyperhomocysteinemia was 2.6 (95% Cl: 1.1-5.9). It is concluded that high plasma homocysteine levels are significantly associated with DVT in symptomatic patients. Further studies are needed to clarify the clinical implications of this association.
Mitochondrial autophagy or mitophagy is a key process that allows selective sequestration and degradation of dysfunctional mitochondria to prevent excessive reactive oxygen species, and activation of cell death. Recent studies revealed that ubiquitin–proteasome complex activity and mitochondrial membrane rupture are key steps preceding mitophagy, in combination with the ubiquitination of specific outer mitochondrial membrane (OMM) proteins. The deubiquitinating enzyme ubiquitin‐specific peptidase 14 (USP14) has been shown to modulate both proteasome activity and autophagy. Here, we report that genetic and pharmacological inhibition of USP14 promotes mitophagy, which occurs in the absence of the well‐characterised mediators of mitophagy, PINK1 and Parkin. Critical to USP14‐induced mitophagy is the exposure of the LC3 receptor Prohibitin 2 by mitochondrial fragmentation and mitochondrial membrane rupture. Genetic or pharmacological inhibition of USP14 in vivo corrected mitochondrial dysfunction and locomotion behaviour of PINK1/Parkin mutant Drosophila model of Parkinson's disease, an age‐related progressive neurodegenerative disorder that is correlated with diminished mitochondrial quality control. Our study identifies a novel therapeutic target that ameliorates mitochondrial dysfunction and in vivo PD‐related symptoms.
Human cell lines are often used to investigate cellular pathways relevant for physiological or pathological processes or to evaluate cell toxicity or protection induced by different compounds, including potential drugs. In this study, we analyzed and compared the differentiating activities of three agents (retinoic acid, staurosporine and 12-O-tetradecanoylphorbol-13-acetate) on the human neuroblastoma SH-SY5Y and BE(2)-M17 cell lines; the first cell line is largely used in the field of neuroscience, while the second is still poorly characterized. After evaluating their effects in terms of cell proliferation and morphology, we investigated their catecholaminergic properties by assessing the expression profiles of the major genes involved in catecholamine synthesis and storage and the cellular concentrations of the neurotransmitters dopamine and noradrenaline. Our results demonstrate that the two cell lines possess similar abilities to differentiate and acquire a neuron-like morphology. The most evident effects in SH-SY5Y cells were observed in the presence of staurosporine, while in BE(2)-M17 cells, retinoic acid induced the strongest effects. Undifferentiated SH-SY5Y and BE(2)-M17 cells are characterized by the production of both NA and DA, but their levels are considerably higher in BE(2)-M17 cells. Moreover, the NAergic phenotype appears to be more pronounced in SH-SY5Y cells, while BE(2)-M17 cells have a more prominent DAergic phenotype. Finally, the catecholamine concentration strongly increases upon differentiation induced by staurosporine in both cell lines. In conclusion, in this work the catecholaminergic phenotype of the human BE(2)-M17 cell line upon differentiation was characterized for the first time. Our data suggest that SH-SY5Y and BE(2)-M17 represent two alternative cell models for the neuroscience field.
Mastitis is the most frequent and costly disease in dairy herds, as it negatively affects yield and milk quality. The presence of clinical mastitis is quite easy to asses, whereas the diagnosis of the subclinical form can be more difficult and requires laboratory assays. Somatic cell count (SCC) is widely used as a rapid and low-cost indicator of mastitis, even if is not useful in discriminating between the clinical and subclinical form. As amyloid A has been investigated as a marker of mastitis, the aim of this study was to assess the potential value of measuring amyloid A in serum and milk and the correlation with SCC in the diagnosis of subclinical mastitis. The reliability of two different ELISA kits for the measurement of amyloid A in milk was also tested. During a 1-month trial period, 21 cows were assigned to three experimental groups according to their health status: 6 cows with clinical mastitis (CM), 10 cows with subclinical mastitis (SM) and 5 healthy cows (HE). Amyloid A was measured both in serum (SAA) and in quarter milk samples (mAA) with a serum ELISA kit, and in quarter milk samples (MAA) with a milk ELISA kit. SCC, total microbial count (TMC) and bacterial examination of the milk were also carried out. After a log transformation, the data were submitted to ANOVA and linear regression. TMC was significantly higher in cows with clinical mastitis, while no differences were observed between the other two experimental groups. SCC and MAA levels were significantly different among the three groups. mAA concentrations were similar between cows with subclinical and clinical mastitis, and SAA was not affected by mastitis. A significant correlation between SCC and MAA or mAA was detected, while no correlation was recorded between SAA and mAA. A close relationship between MAA and mAA was noticeable even at low concentrations, suggesting MAA as a potential physiological marker of subclinical mastitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.