The present paper is aimed at the study of the kinetics of Mn, Si, Cr partitioning in 0.2wt%C-Si2Mn2CrMoVNb TRIP-assisted steel under the annealing at 770 oC and 830 oC to be within the intercritical temperature range. The work was fulfilled using SEM, EDX, dilatometry, and hardness measurements. It was found that under heating a redistribution of the alloying elements between ferrite and austenite took place. Specifically, silicon partitioned to ferrite while chromium diffused to austenite with distribution coefficient values of 1.12-1.21 (KSi) and 0.75-0.86 (KCr). Manganese was found to partition to a much greater extent resulting in a distribution coefficient of KMn=0.38-0.50 and 2.6 times higher concentration in austenite as compared to ferrite. As annealing temperature raised from 770 oC to 830 oC the elemental partitioning was accelerated, followed by the decrease in manganese content in austenite (by 1.44 time) and ferrite (by 1.34 time) caused by an increase in austenite volume fraction. Silicon featured uneven distribution within ferrite to be accumulated at the “martensite/ferrite” interface and near ferrite grain boundaries, while manganese was concentrated in MC carbides. The recommendation for annealing holding was formulated based on elemental partitioning kinetics.
The paper presents results of the investigation of phasestructural transformations and volumetric changes that occur during heating in high-silicon spring steel 60Si2CrV subjected to Q&P(quenching and partition) treatment. Chemical composition of the steel was: 0.53 % C; 1.46 % Si; 0.44 % Mn; 0.95 % Cr; 0.10 % V; 0.016 % S; 0.013 % P. Steel samples were subjected to Q-n-P treatment as follows: a) austenitization at 880 °C; b) quenching with the cooling stop at 120, 160, 200 and 240 °C; c) subsequent holding at 220, 250 and 300 °С with duration from 10 to 3600 s; d) final cooling in water. The volumetric changes during heating were studied using an optical differential dilatometer at a heating rate of 1 K/s. As a reference, a sample of the same steel stabilized by high tempering was used. The amount of retained austenite was determined by X-ray diffraction using a diffractometer DRON-3 with Fe-radiation. It is found that on the heating curves of Q&P samples, the sections corresponding to different transformations during tempering are clearly identified. On dilatograms of the Q&P samples, dilatometric effect corresponding to the second transformation during tempering (270 – 430 °C) was found to be increased dramatically, indicating an increase in retained austenite amount compared to the quenched state as a result of Q&P treatment (as confirmed by Xray study). At the same time, value of the effect corresponding to the third transformation during tempering was found to be decreased. To obtain the maximum amount of retained austenite in 60Si2CrV steel, the partitioning temperature should be of 260 – 300 °С, while the quenching completion temperature should be of 160 – 240 °С. The amount of retained austenite rises substantially as the quenching temperature increases. Duration of the partitioning stage should be selected taking into account the extreme character of austenite dependence on the partitioning time. As a result of the work, an effective applicability of the dilatometric method for analyzing the steel structural state and choosing the optimal mode of Q&P treatment was demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.