The principal source of hydrogen peroxide in mitochondria is thought to be from the dismutation of superoxide via the enzyme manganese superoxide dismutase (MnSOD). However, the nature of the effect of SOD on the cellular production of H(2)O(2) is not widely appreciated. The current paradigm is that the presence of SOD results in a lower level of H(2)O(2) because it would prevent the non-enzymatic reactions of superoxide that form H(2)O(2). The goal of this work was to: a) demonstrate that SOD can increase the flux of H(2)O(2), and b) use kinetic modelling to determine what kinetic and thermodynamic conditions result in SOD increasing the flux of H(2)O(2). We examined two biological sources of superoxide production (xanthine oxidase and coenzyme Q semiquinone, CoQ(*-) that have different thermodynamic and kinetic properties. We found that SOD could change the rate of formation of H(2)O(2) in cases where equilibrium-specific reactions form superoxide with an equilibrium constant (K) less than 1. An example is the formation of superoxide in the electron transport chain (ETC) of the mitochondria by the reaction of ubisemiquinone radical with dioxygen. We measured the rate of release of H(2)O(2) into culture medium from cells with differing levels of MnSOD. We found that the higher the level of SOD, the greater the rate of accumulation of H(2)O(2). Results with kinetic modelling were consistent with this observation; the steady-state level of H(2)O(2) increases if K<1, for example CoQ(*-)+O(2)-->CoQ+O(2)(*-). However, when K>1, e.g. xanthine oxidase forming O(2)(*-), SOD does not affect the steady state-level of H(2)O(2). Thus, the current paradigm that SOD will lower the flux of H(2)O(2) does not hold for the ETC. These observations indicate that MnSOD contributes to the flux of H(2)O(2) in cells and thereby is involved in establishing the cellular redox environment and thus the biological state of the cell.
Although its concentration is generally not known, glutathione peroxidase-1 (GPx-1) is a key enzyme in the removal of hydrogen peroxide (H 2 O 2 ) in biological systems. Extrapolating from kinetic results obtained in vitro using dilute, homogenous buffered solutions, it is generally accepted that the rate of elimination of H 2 O 2 in vivo by GPx is independent of glutathione concentration (GSH). To examine this doctrine, a mathematical analysis of a kinetic model for the removal of H 2 O 2 by GPx was undertaken to determine how the reaction species (H 2 O 2 , GSH, and GPx-1) influence the rate of removal of H 2 O 2 . Using both the traditional kinetic rate law approximation (classical model) and the generalized kinetic expression, the results show that the rate of removal of H 2 O 2 increases with initial GPx r , as expected , but is a function of both GPx r and GSH when the initial GPx r is less than H 2 O 2 . This simulation is supported by the biological observations of Li et al.. Using genetically altered human glioma cells in in vitro cell culture and in an in vivo tumour model, they inferred that the rate of removal of H 2 O 2 was a direct function of GPx activity)GSH (effective GPx activity). The predicted cellular average GPx r and H 2 O 2 for their study are approximately GPx r 51 mm and H 2 O 2 :5 mm based on available rate constants and an estimation of GSH. It was also found that results from the accepted kinetic rate law approximation significantly deviated from those obtained from the more generalized model in many cases that may be of physiological importance.
The dissociation constant, K(d) , is an important parameter for characterizing protein-protein interaction affinities. SUMOylation is one of the important protein post-translational modifications and it involves a multi-step enzymatic cascade reaction, resulting in peptide activation and substrate conjugation. Multiple covalent and non-covalent protein-protein interactions are involved in this cascade. Techniques involving Förster resonance energy transfer (FRET) have been widely used in biological studies in vitro and in vivo, and they are very powerful tools for elucidating protein interactions in many regulatory cascades. In our previous studies, we reported the attempt to develop a new method for the determination of the K(d) by FRET assay using the interaction of SUMO1 and its E2 ligase, Ubc9 as a test system. However, the generality and specifications of this new method have not been fully determined. Here we report a systematic approach for determining the dissociation constant (K(d) ) in the SUMOylation cascade and for further sensitivity and accuracy testing by the FRET technology. From a FRET donor to acceptor concentration ratio range of 4-40, the K(d) s of SUMO1 and Ubc9 consistently agree well with values from surface plasmon resonance and isothermal titration calorimetry. These results demonstrate the high sensitivity and accuracy of the FRET-based K(d) determination approach. This technology, therefore, can be used in general for protein-protein interaction dissociation constant determination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.