A problem of accelerating pellets of significant mass with a C02-laser pulse (or a pulse train) is under consideration. As it is known, the highest magnitudes of the accelerated pellet velocity of about 100 km/s were observed in the experiments on accelerating flat foils with a nanosecond Nd-laser pulse. The acceleration efficiency achieved was 5-10%. However the accelerated target usually turned into a cloud of superdense low-temperature plasma in these experiments.To avoid pellet destruction and to achieve maximum acceleration it is necessary, depending on the task stated, to meet certain requirements to the laser wave-length, power density and pulse duration. So, for instance, to accelerate pellets of frozen hydrogen only longwave lasers can be used. When pellets of other materials are to be accelerated the wave length range used can be broadened. However, the laser pulse duration must be large enough to avoid shock wave formation.The regime of laser-driven rocket traction seems to be the most acceptable. Difficulties in attaining this regime in the experiment mainly concern formation of a uniform and extended in the atmosphere laser beam. Acceleration of frozen hydrogen pellets for fuel injection in thermo-nuclear setups with magnetic confinement are discussed. It is shown that on the basis oflaboratory C02-lasers available pellet velocities up to 10-100 kmls can be obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.