Crystal structure investigations, electrical resistivity, and magnetic measurements have been performed for polycrystalline samples of intercalated compounds Cr(x)TiTe(2) with a Cr concentration up to x = 0.65. According to the room-temperature x-ray diffraction study of Cr(x)TiTe(2), the initial hexagonal crystal structure transforms to a monoclinic one with increasing Cr content up to x≥0.5 due to the ordering of Cr ions. The intercalation results in the change of the resistivity behavior in Cr(x)TiTe(2) from metal-like at x = 0 to insulator-like above x = 0.33 and leads to ferromagnetic ordering of Cr magnetic moments at x≥0.5. For the compound Cr(0.25)TiTe(2), structural transformations and anomalous resistivity behavior are observed around 230 K, which cannot be explained only by the order-disorder transition within the subsystem of intercalated Cr ions. Structural changes within Te-Ti-Te sandwiches associated with charge density wave instability are suggested to be involved in this phase transition as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.