This study provides Class III evidence that left posterior parietal cortex theta-burst stimulation improves hemispatial neglect for up to 2 weeks after treatment.
Visuospatial abilities are preferentially mediated by the right hemisphere. Although this asymmetry of function is thought to be due to an unbalanced interaction between cerebral hemispheres, the underlying neurophysiological substrate is still largely unknown. Here, using a method of trifocal transcranial magnetic stimulation, we show that the right, but not left, human posterior parietal cortex exerts a strong inhibitory activity over the contralateral homologous area by a short-latency connection. We also clarify, using diffusion-tensor magnetic resonance imaging, that such an interaction is mediated by direct transcallosal projections located in the posterior corpus callosum. We argue that this anatomo-functional network may represent a possible neurophysiological basis for the ongoing functional asymmetry between parietal cortices, and that its damage could contribute to the clinical manifestations of neglect.
In animal models of Alzheimer's disease (AD), mechanisms of cortical plasticity such as long-term potentiation (LTP) and long-term depression (LTD) are impaired. In AD patients, LTP-like cortical plasticity is abolished, whereas LTD seems to be preserved. Dopaminergic transmission has been hypothesized as a new player in ruling mechanisms of cortical plasticity in AD. We aimed at investigating whether administration of the dopamine agonist rotigotine (RTG) could modulate cortical plasticity in AD patients, as measured by theta burst stimulation (TBS) protocols of repetitive transcranial stimulation applied over the primary motor cortex. Thirty mild AD patients were tested in three different groups before and after 4 weeks of treatment with RTG, rivastigmine (RVT), or placebo (PLC). Each patient was evaluated for plasticity induction of LTP/LTD-like effects using respectively intermittent TBS (iTBS) or continuous TBS protocols. Short-latency afferent inhibition (SAI) protocol was performed to indirectly assess central cholinergic activity. A group of age-matched healthy controls was recruited for baseline comparisons. Results showed that at baseline, AD patients were characterized by impaired LTP-like cortical plasticity, as assessed by iTBS. These reduced levels of LTP-like cortical plasticity were increased and normalized after RTG administration. No effect was induced by RVT or PLC on LTP. LTD-like cortical plasticity was not modulated in any condition. Cholinergic activity was increased by both RTG and RVT. Our findings reveal that dopamine agonists may restore the altered mechanisms of LTP-like cortical plasticity in AD patients, thus providing novel implications for therapies based on dopaminergic stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.