We report the observation and characterization of field emission current from individual single- and few-layer graphene flakes laid on a flat SiO2 / Si substrate. Measurements were performed in a scanning electron microscope chamber equipped with nanoprobes which allowed local measurement of the field emission current. We achieved field emission currents up to 1 A from the flat part of graphene flakes at applied fields of few hundred volt per micrometer. We found that the emission process is stable over a period of several hours and that it is well described by a Fowler–Nordheim model for currents over five orders of magnitude. © 2011 American Institute of Physics. doi:10.1063/1.357953
We fabricate planar graphene field-effect transistors with self-aligned side-gate at 100 nm from the 500 nm wide graphene conductive channel, using a single lithographic step. We demonstrate side-gating below 1 V with conductance modulation of 35% and transconductance up to 0.5 mS/mm at 10 mV drain bias. We measure the planar leakage along the SiO2/vacuum gate dielectric over a wide voltage range, reporting rapidly growing current above 15 V. We unveil the microscopic mechanisms driving the leakage, as Frenkel-Poole transport through SiO2 up to the activation of Fowler-Nordheim tunneling in vacuum, which becomes dominant at higher voltages. We report a field-emission current density as high as 1 μA/μm between graphene flakes. These findings are important for the miniaturization of atomically thin devices
Multiwalled carbon nanotube sheets of relatively large area have been grown on a sapphire substrate by chemical vapor deposition at the substrate temperature of 500 and 750°C. The photoconductivity measurements, performed under white light and monochromatic radiation in the ultraviolet–visible–near infrared region, show that the highly defective sample grown at 500°C has a higher photosensitivity, thus revealing the crucial role of structural defects in determining the overall photoresponse of the nanotube’s sheets. The spectral photoresponse of these nanostructured films increases with the increase in photon energy, and is strongly correlated to the absorbance. The photoconductivity properties of these materials are favorable in potential development of large area light sensors as well as optoelectronic nanodevices.
A series of redox catalysts based on the immobilization of tyrosinase on multiwalled carbon nanotubes has been prepared by applying the layer-by-layer principle. The oxidized nanotubes (ox-MWCNTs) were treated with poly(diallyl dimethylammonium chloride) (PDDA) and tyrosinase to yield ox-MWCNTs/PDDA/tyrosinase I. Catalysts II and III have been prepared by increasing the number of layers of PDDA and enzyme, while IV was obtained by co-immobilization of tyrosinase with bovine serum albumin (ox-MWCNTs/PDDA/BSA-tyrosinase). Attempts to covalently bind tyrosinase provided weakly active systems. The coating of the enzyme based on the simple layer-by-layer principle has afforded catalysts I–III, with a range of activity from 21 units/mg (multilayer, II) to 66 units/mg (monolayer, I), the best system being catalyst IV (80 units/mg). The novel catalysts were fully characterized by scanning electron microscopy and atomic force microscopy, showing increased activity with respect to that of the native enzyme. These catalysts were used in the selective synthesis of catechols by oxidation of meta- and para-substituted phenols in an organic solvent (CH2Cl2) as the reaction medium. It is worth noting that immobilized tyrosinase was able to catalyze the oxidation of very hindered phenol derivatives that are slightly reactive with the native enzyme. The increased reactivity can be ascribed to a stabilization of the immobilized tyrosinase. The novel catalysts I and IV retained their activity for five subsequent reactions, showing a higher stability in organic solvent than under traditional buffer conditions.
The dependence of electrical conductivity on compression of a freestanding three-dimensional carbon nanotube (CNT) network is investigated. This macrostructure is made of mm-long and entangled CNTs, forming a random skeleton with open pores. The conductivity linearly increases with the applied compression. This behaviour is due to increase of percolating pathways-contacts among neighbouring CNTs-under loads that is highlighted by in situ scanning electron microscopy analysis. The network sustains compressions up to 75% and elastically recovers its morphology and conductivity during the release period. The repeatability coupled with the high mechanical properties makes the CNT network interesting for pressure-sensing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.