The purpose of this work is to analyse and study the possibilities of using unmanned aerial vehicles (UAVs) for military purposes. Methodology. One of the important tasks of using UAVs is topographic aerosurveying for processing large-scale plans, which, as confirmed by the experience of military actions, are a necessity to work with them by appropriate composition. But this process is rather complicated, since many requirements for carrying out the aerosurveying must be observed such as adhering to the height of surveying for the scaling of aerial images, and to the stabilization of the aircraft to reduce angles of inclination and speed for receiving longitudinal overlap. All these factors lead to rapid detection of an object and its destruction. Therefore, the authors have made an analysis of modern type of UAVs that are used for aerosurveying of military objects. Also it presented a detailed classification of military UAVs, established a list of tasks that they can perform, and made appropriate conclusions. Requirements for the establishment of military UAVs have been developed. The research of the developed UAV Arrow has been carried out in order to confirm the possibility of its application in aerial surveying purposes. Results. To determine the aerodynamics performed by both the Arrow aircraft and the Trimble UX5 UAV aircraft in aerating of the same plot. A comparative analysis of the values of the angles of yaw, roll, and pitch of UAV Arrow and Trimble UX5 for each route is made. Scientific novelty and practical significance. UAV currently perform different tasks in many industries of the economy and defence of countries. The main advantage of using UAVs in military affairs is that they can perform their tasks in automatic or semi-automatic modes with minimal human participation in the control process. Taking into account the military conflict in the east of Uraine, this issue becomes particularly relevant, since the determining of peculiarities of using of UAVs for military purposes will allow: to reduce losses among both the military and the civilian populations which are often attacked; to conduct invisible reconnaissance of ground objects and enemy targets in enemy occupied territory; to determine targets for attack; to make a point artillery or air strike on enemy targets and subsequently to control the results of the attack; to conduct radio-electron struggle; to detect and to neutralize enemy's UAVs.
The aim of the work is to analyze and evaluate current methods for studying Earth’s surface subsidence-dip deformation processes of technogenically impacted areas and to classify these methods. The analysis of existed methods for studying the spatio-temporal changes in the Earth’s surface consists in their critical assessment based on studied literary sources and highlighting advantages and disadvantages of the geodetic methods for studying the deformation processes of hazardous territories (with landslides and failures). Applying the classification method, a scheme of geodetic methods used in the Earth’s surface monitoring of technogenically loaded areas was developed. The analysis and evaluation of actual geodetic methods for studying the quantitative parameters of subsidence-dip deformation processes has been carried out. Literary sources written by Ukrainian and foreign scientists are processed. The advantages and disadvantages of the studied methods are presented. The classification of geodetic methods for studying and monitoring Earth’s surface deformations has been developed. The obtained results can serve as a theoretical basis that allows for further improvement of the technology for studying subsidence-dip deformation processes of technogenically impacted territories in order to predict technogenic disasters, improve the environmental situation and ensure life safety. The presented classification structures the current geodetic methods of studying the quantitative parameters of the spatio-temporal changes of the Earth’s surface.
Goal. The purpose of the work is to develop an aerial photography complex based on a DJI S1000 helicopter UAV for aerial photography, which includes a laser scanner (LS) and a digital camera (CPC). Method. For several decades, aerial photography has been an effective tool for geodetic works, geophysical surveys and various types of monitoring. On the other hand, the use of not only digital imaging, but also laser scanning of objects allows to maximize the accuracy of obtaining the coordinates of points on the ground and eliminate such a process as plan-height binding in the field, which occupies more than 80 % of field work that is, much cheaper the process of creating cartographic materials. In addition, the use of laser scanners on board unmanned aerial vehicles helps to solve a number of scientific and applied problems in various fields, such as engineering research, environmental monitoring, landscape research and modeling, construction, architecture, archeology and more. Comprehensive study, research and monitoring of the environment involves the availability and use of highly efficient modern technologies, special software for data processing and analysis and qualified human resources. Aerial laser scanners are the latest high-precision technology for obtaining data about the object by noncontact method and have a multi-purpose purpose. I have been actively using them in the world since the early 2000s. They have a number of advantages over traditional aerial photography. Drugs are manufactured by the world’s leading companies, they are available on the market and are in great demand among foreign specialists. Unfortunately, in Ukraine, airborne laser scanners are used in limited quantities to perform special tasks with the involvement of foreign experts. In this area we have a significant lag compared to other European countries. Therefore, the acquisition and application of such a software and technology complex and UAV will help solve and accelerate the solution of many important scientific and applied problems in Ukraine, as well as increase the potential, opportunities and prestige in domestic and world science and practice. Results. A mock-up model of installation and implementation of Velodyne VLP-16 on a DJI S1000 helicopter UAV has been developed. The authors analyzed the known systems and created the best option for connecting and connecting the elements, which made it possible to simplify the layout of the devices, which in turn made it possible to reduce the cost of the proposed complex. Scientific novelty and practical significance. For the first time in Ukraine, a method of installing a helicopter-type UAV was developed and proposed. With the help of an airborne laser scanning system installed on board an unmanned aerial vehicle of helicopter type it is possible to solve a number of important scientific and applied tasks, such as: monitoring the technical condition of large and hard-to-reach structures – nuclear, hydro and thermal power plants, power lines, etc. ; monitoring the condition of roads, detecting places of surface damage and other dangerous places in order to prevent car accidents; detection of damage to forests and agricultural lands; observation and prevention of landslides in mountains and industrial quarries, places of soil erosion; monitoring of water resources, changes in contours and heights of the coastal strip; detection of roof defects, deformations, wall cracks on highrise buildings for architectural measurements, 3D modeling, documentation and preservation of cultural heritage sites; assistance in archaeological exploration to identify archaeological sites and study artifacts. In addition, peripheral drugs can be installed on other moving objects (cars, railcars, boats, etc.) and scanning from fixed bases in stationary conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.