A quantum key distribution system based on the subcarrier wave modulation method has been demonstrated which employs the BB84 protocol with a strong reference to generate secure bits at a rate of 16.5 kbit/s with an error of 0.5% over an optical channel of 10 dB loss, and 18 bits/s with an error of 0.75% over 25 dB of channel loss. To the best of our knowledge, these results represent the highest channel loss reported for secure quantum key distribution using the subcarrier wave approach. A passive unidirectional scheme has been used to compensate for the polarization dependence of the phase modulators in the receiver module, which resulted in a high visibility of 98.8%. The system is thus fully insensitive to polarization fluctuations and robust to environmental changes, making the approach promising for use in optical telecommunication networks. Further improvements in secure key rate and transmission distance can be achieved by implementing the decoy states protocol or by optimizing the mean photon number used in line with experimental parameters.
Many quantum key distribution systems employ a laser followed by an optical attenuator to prepare weak coherent states in the source. Their mean photon number must be pre-calibrated to guarantee the security of key distribution. Here we experimentally show that this calibration can be broken with a high-power laser attack. We have tested four fiber-optic attenuator types used in quantum key distribution systems, and found that two of them exhibit a permanent decrease in attenuation after laser damage. This results in higher mean photon numbers in the prepared states and may allow an eavesdropper to compromise the key.
In this paper we report a continuous-variable quantum key distribution protocol using multimode coherent states generated on subcarrier frequencies of the optical spectrum. We propose a coherent detection scheme where power from a carrier wave is used as a local oscillator. We compose a mathematical model of the proposed scheme and perform its security analysis in the finite-size regime using fully quantum asymptotic equipartition property technique. We calculate a lower bound on the secret key rate for the system under the assumption that the quantum channel noise is negligible compared to detector dark counts, and an eavesdropper is restricted to collective attacks. Our calculation shows that the current realistic system implementation would allow distributing secret keys over channels with losses up to 9 dB. Quantum key distribution (QKD) is a method of sharing symmetric cryptographic keys between two parties that is based on encoding information in the states of quantum objects and subsequent distillation of the key through a classic communication channel. The first quantum cryptography protocols exploited the quantum system with degrees of freedoms 1-3. A numerous amount of different techniques for security proofs for discrete variable QKD systems has already been presented 4-13. Experimental implementations of this family of QKD protocols rely on single-photon detectors for quantum state measurements. In turn, continuous-variable QKD (CV-QKD), which was proposed later, relies on methods of coherent detection, homodyne or heterodyne, for gaining information about the quantum states. In other words, single-photon detection is replaced by conventional optical communication methods. However, security proofs for CV-QKD protocols currently remain less advanced 14,15. There are two types of CV protocols that differ by signal modulation method: Gaussian 16,17 , where the complex amplitudes of coherent states are selected randomly from a normal distribution, and discrete modulation (DM) 18-22 with weak coherent phase-coded states. Other CV-QKD protocols are based on two-mode squeezed vacuum states transmission and measurement via homodyne or heterodyne detection 23. Security proofs for Gaussian CV-QKD protocols remain the most developed: they were presented against general attacks in the finite key regime using several different approaches 24. Security analysis for CV-QKD protocol with two-mode squeezed vacuum states was also performed 25,26. Discrete-variable CV-QKD protocols possess several important advantages; among those are relative implementation simplicity and a possibility to minimize the number of parameters that need to be monitored. Nevertheless, security proofs for discrete-modulation CV-QKD systems require special consideration. In the asymptotic limit, its security has been proven against collective attacks 27. Recently it was shown that security proof for CV-QKD with discrete modulation against general attacks is possible 27. Here we propose an implementation of CV-QKD protocol based on subcarrier wa...
In this paper we investigate the chromatic dispersion impact on the quantum key distribution system based on multi-mode weak coherent phase-coded states. We provide an asymptotic secure key rate estimation, taking into account error detection probability due to chromatic dispersion. We demonstrate numerically and experimentally that the effect of chromatic dispersion in an optical fiber without any compensation hinders the secret key distribution at a distance more than 53 km. Finally, we propose a modification to the considered quantum communication system in order to mitigate the influence of chromatic dispersion on its performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.