Developing high-velocity atmospheric aircraft equipped with ramjet engines, which use atmospheric air as the oxidizer, is an important component of aerospace technology prospects. These craft may be employed to quickly deliver payloads over intercontinental distances and as boosters for spacecraft injection into orbit. A characteristic feature of high-velocity atmospheric aircraft is a presence of sharp aerofoil edges subjected to highly oxidative airflow. This means that actual implementation of numerous hypersonic atmospheric aircraft projects largely depends on whether it is possible to develop materials that could remain stable in an oxidative atmosphere at temperatures of 2000--2500 °C. We estimated the thermal state of a structural component in the shape of a blunted wedge made out of promising refractory ceramics under flight conditions at an altitude of 22 km and a velocity of Mach 7
One of the most important problems in the development of advanced products of aerospace engineering and highly efficient power plants is to make high-temperature structural, heat-shielding and heat-insulating materials with extremely high operating temperatures of 2000--2500 °C. Even for prototype models, it is necessary to make a qualitative breakthrough in the field of materials science and the production of new high-temperature composite and heat-insulating materials which provide thermal protection and the permissible temperature conditions of structural elements at high temperatures. The practical application of the developed materials requires an evaluation of the whole body of their physicomechanical, optical, and thermophysical characteristics, which can only be done in experimental studies. We developed the design of the experimental setup and the methodology for the approximate evaluation of the thermophysical characteristics of highly porous heat-insulating materials at temperatures up to 2000 °C. A propane / oxygen or acetylene / oxygen multi-nozzle torch serves as a heating source for samples with a characteristic size of up to 50 × 50 mm. The paper substantiates the methodology for processing the measurement results in order to determine the thermophysical characteristics, and gives the results of a study of the thermal conductivity of highly porous zirconium oxide-based material
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.