A new configuration for observation of magneto-optical subnatural-linewidth resonances of electromagnetically induced absorption (EIA) in alkali vapor has been verified experimentally. The configuration includes using two counter-propagating pump and probe light waves with mutually orthogonal linear polarizations, exciting an open optical transition of an alkali atom in the presence of a buffer gas. The main advantage of the novel observation scheme consists in the possibility of obtaining simultaneously high-contrast and quite narrow nonlinear signals. Here a 2.5-cm long rubidium-87 vapor cell filled with Ar buffer gas is used, and the excited optical transition is the Fg=2→Fe=1 of the D1 line. The signals registered reach a contrast of 57.7% with a FWHM of 7.2 mG. The contrast with respect to a wide Doppler pedestal well exceeds 100%. To our knowledge, to date this is the best result for EIA resonances in terms of contrast-to-width ratio. In general, the results demonstrate that the new magneto-optical scheme has very good prospects for various applications in quantum metrology, nonlinear optics and photonics.
Level-crossing (LC) resonances in alkali-metal vapors are widely used for atomic magnetometry. One of the most simple and robust techniques involves a single circularly polarized light wave, while a transverse magnetic field (Bx⊥k) is scanned around zero to observe the subnatural-linewidth resonance of electromagnetically induced transparency (EIT) in the light wave transmission. This technique allows miniaturization of the magnetic field sensor to a great extent, maintaining high sensitivity of measurements. To obtain a high quality factor of the LC resonance and, therefore, high performance of the sensor, either a high temperature (>120 °C) or an extended volume of the vapor cell (V≫1 cm3) is usually required. Here, we propose a slight modification to the commonly used configuration, which can provide high-quality LC resonances in small (≪1 cm3) vapor cells at a relatively low temperature of 60 °C or less. The modification consists in adding the second (pump) counterpropagating light wave with opposite circular polarization (σ+σ− configuration). In our experiments, the waves excite the D1-line ground-state level Fg=4 in cesium atoms in the presence of a buffer gas (Ne, 130 Torr). In the proposed scheme, a subnatural-linewidth electromagnetically induced absorption (EIA) resonance is observed. We compare parameters of the EIA resonance with those obtained in the single-wave scheme to show benefits of using the proposed σ+σ− configuration. The results have good prospects for developing a low-power miniaturized atomic magnetometer with a wide operating range.
A dual-frequency light field scheme, composed of counterpropagating pump and probe light waves with equal circular polarizations and different intensities, is proposed for the detection of subnatural-linewidth electromagnetically induced absorption (EIA) resonances. In this scheme, the bright-type EIA resonance is obtained at fixed static magnetic field by tuning the frequency difference between both optical fields and can be used as a frequency reference in an atomic clock. Using a 5-mm long buffer-gas-filled Cs vapor cell, an EIA-based atomic clock with a short-term fractional frequency stability of 5.8 × 10 −12 τ −1/2 until 20 s integration time is reported. These performances are found to be in correct agreement with the signal-to-noise/linewidth ratio of the resonance. The proposed EIA scheme can be considered as an alternative approach to the coherent population trapping (CPT) technique for the development of compact atomic clocks and sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.