Tightly regulated power electronic converters show negative impedance characteristics and behave as a constant power load (CPL) which sink constant power from their input bus. This incremental negative impedance characteristics of tightly regulated point-of-load converters in multi-converter power systems have a destabilising effect on source converters and may destabilise the whole system. Similar phenomena also occur in many situations like dc microgrid, vehicular power system. Here, the authors present a robust pulse-width modulation-based sliding-mode controller for a dc/dc boost converter feeding the CPL in a typical dc microgrid scenario. A non-linear surface is proposed which ensures constant power to be delivered to the load. The existence of sliding mode and stability of the sliding surface are proved. The proposed controller is implemented using OPAL-RT real-time digital simulator on a laboratory prototype of dc/dc boost converter system. The effectiveness of the proposed sliding-mode controller is validated through simulation and experimental results under different operating conditions.
In recent years DC micro-grid has been widely accepted as one of the promising solutions to integrate renewable energy sources and to supply power to critical loads such as data centres, remote villages and communication stations. However, DC micro-grid has a fundamental stability challenge due to constant power load (CPL) characteristics of point-ofload converters, which introduce destabilising effect in the system. This study presents a sliding mode control based nonlinear control scheme for a solar photo-voltaic based DC micro-grid in the presence of CPLs. The objective of the proposed control scheme is to tightly regulate the DC bus voltage and mitigate the destabilising effects of CPLs. The stability of the system is analytically established and a limit of CPL is obtained. Furthermore, a charging/discharging algorithm is implemented for battery bank interfacing bidirectional converter which facilitates three modes charging namely constant current, constant voltage, and float mode, to enhance the battery life. The validation of the effectiveness of the proposed scheme is done through simulation and experimental results. It is found that the proposed control scheme ensures desired operation of the DC micro-grid under various operating modes and maintains system stability with CPL under variations in the primary resource and load demand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.