TiN/CrN multilayered PVD coatings are known to exhibit outstanding micromechanical properties and wear resistance. On the other hand, information on their small scale fracture behaviour is rather scarce. The present work aims to address it by testing to failure FIB-milled microbeams of multilayer TiN/CrN systems with different bilayer periods (8, 19 and 25 nm). In doing so, these micrometric specimens are first FIB notched, and thus deflected by means of a nanoindentation system. It is found that multilayer architecture translates into a beneficial synergic effect regarding critical load for reaching unstable failure; and thus, on energy absorption at fracture. Such behaviour is associated with small scale crack deflection as main toughening mechanism.Peer ReviewedPostprint (author's final draft
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.