This paper proposes a neural network approach for forecasting short-term electricity prices. Almost until the end of last century, electricity supply was considered a public service and any price forecasting which was undertaken tended to be over the longer term, concerning future fuel prices and technical improvements. Nowadays, short-term forecasts have become increasingly important since the rise of the competitive electricity markets. In this new competitive framework, short-term price forecasting is required by producers and consumers to derive their bidding strategies to the electricity market. Accurate forecasting tools are essential for producers to maximize their profits, avowing profit losses over the misjudgement of future price movements, and for consumers to maximize their utilities. A three-layered feedforward neural network, trained by the Levenberg-Marquardt algorithm, is used for forecasting next-week electricity prices. We evaluate the accuracy of the price forecasting attained with the proposed neural network approach, reporting the results from the electricity markets of mainland Spain and California.
This paper proposes artificial neural networks in combination with wavelet transform for short-term wind power forecasting in Portugal. The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges.
A novel hybrid approach, combining wavelet transform, particle swarm optimization, and adaptive-network-based fuzzy inference system, is proposed in this paper for short-term electricity prices forecasting in a competitive market. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications. Finally, conclusions are duly drawn.
This paper is a review of literature with an analysis on a selection of scientific studies for detection of non-technical losses. Non-technical losses occurring in the electric grid at level of transmission or of distribution have negative impact on economies, affecting utilities, paying consumers and states. The paper is concerned with the lines of research pursued, the main techniques used and the limitations on current solutions. Also, a typology for the categorization of solutions for detection of non-technical losses is proposed and the sources and possible attack/vulnerability points are identified. The selected literature covers a wide range of solutions associated with non-technical losses. Of the 103 selected studies, 6 are theoretical, 25 propose hardware solutions and 72 propose non-hardware solutions. Data based classification models and data from consumption with high resolution are respectively required in about 47% and 35% of the reported solutions. Available solutions cover a wide range of cases, with the main limitation found being the lack of an unified solution, which enables the detection of all kinds of non-technical losses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.