The paper discusses geological, mineralogical, petrographic, and geochemical data on the Ureg Nuur volcanoplutonic association of high-Mg volcanic and subvolcanic rocks located among Vendian–Cambrian accretionary structures in the Mongolian Altay. These rocks have a high potassium alkalinity (K2O/Na2O up to 1.2), are enriched in LILE and Sr, and have negative Zr–Hf and Nb anomalies in multielement spectra; this confirms the suprasubduction type of the source of melts. The geological setting and established age (512.4 ± 6.1 Ma, 39Ar–40Ar dating of biotite phenocrysts) evidence picritic magmatism at the accretionary stage of the development of the Altay fragment of the Paleoasian ocean. This indicates a large igneous province related to a mantle plume.
Pd-rich pentlandite (PdPn) along with ore-forming pentlandite (Pn) occurs in the cubanite and chalcopyrite massive sulfide ores in the EM-7 well of the Southern-2 ore body of the Talnakh deposit. PdPn forms groups of small grains and comprises marginal areas in large crystals of Pn. The palladium content in PdPn reaches up to 11.26 wt.%. EDS elemental mapping and a contour map of palladium concentrations indicate distinct variations in the palladium content within and between individual grains. Palladium distribution in the large grains is uneven and non-zoned. PdPn was formed as the result of a superimposed process, which is not associated with either the sulfide liquid crystallization or the subsolidus transformations of sulfides. Deming regression calculations demonstrated the isomorphic substitution character of Ni by 0.71 Pd and 0.30 Fe (apfu), leading to PdPn occurrence. The replacement of Ni by Fe may also indicate a change in sulfur fugacity, compared to that taking place during the crystallization of the primary Pn. The transformation of Pn into PdPn could have occurred under the influence of a Pd-bearing fluid, which separated from the crystallizing body of the massive sulfide ores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.