Intratumor heterogeneity inherent in the majority of human cancers is a major obstacle for a highly efficient diagnosis and successful prognosis and treatment of these diseases. Being a result of clonal diversity within the same tumor, intratumor heterogeneity can be manifested in variability of genetic and epigenetic status, gene and protein expression, morphological structure, and other features of the tumor. It is most likely that the appearance of this diversity is a source for the adaptation of the tumor to changes in microenvironmental conditions and/or a tool for changing its malignant potential. In any case, both processes result in the appearance of cell clones with different undetermined sets of hallmarks. In this review, we describe the heterogeneity of molecular disorders in various human tumors and consider modern viewpoints of its development including genetic and non-genetic factors of heterogeneity origin and the role of cancer stem cells and clonal evolution. We also systematize data on the contribution of tumor diversity to progression of various tumors and the efficiency of their treatment. The main problems are indicated in the diagnosis and therapy of malignant tumors caused by intratumor heterogeneity and possible pathways for their solution. Moreover, we also suggest the key goals whose achievement promises to minimize the problem of intratumor heterogeneity and to identify new prognostic, predictive, and target markers for adequate and effective treatment of cancer.
In this study, the influence of intratumoral morphological heterogeneity of breast cancer on neoadjuvant chemotherapy (NAC) efficiency was investigated. In particular, we analysed the association of NAC response and pre- and post-NAC expression of the main multidrug resistance (MDR) genes - ABCB1, ABCC1, ABCC5, ABCG1, and ABCG2, with the presence of different morphological structures in breast tumors. In addition, the expression of MDR genes was investigated in different morphological structures and in their microenvironment by comparing probes obtained using laser microdissection. The results of this study showed that tumors with alveolar structures were more frequently NAC-nonresponsive than cases without this structural type (p = 0.0028, Bonferroni-corrected p = 0.014). The presence of trabecular structures in breast tumors was also associated with chemoresistance (p = 0.0272, Bonferroni-corrected p = 0.136). High expression of MDR genes was not found in alveolar structures (including their microenvironment) and in tumors containing this structural type. In contrast, more active MDR genes and expression of the ABCB1 gene were found only in trabecular structures. Taken together, our data indicate that breast tumors with alveolar structures possess resistance to NAC, which is not related to high expression of MDR genes, whereas chemoresistance of tumors with trabecular structures can depend on the expression level of ABCB1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.