An interpenetrating polymer network, IPN, is defined as a combination of two or more polymers in network form, at least one of which is polymerized and/or crosslinked in the immediate presence of the other(s). The synthesis, morphology and mechanical properties of recent works are reviewed, with special emphasis on dual phase continuity, and the number of physical entanglements that arise in homo‐IPNs. The concepts of phase diagrams are applied, especially to simultaneous interpenetrating network phase separations and gelations. Recent engineering applications are discussed.
SYNOPSISIn a model polyurethane/poly(methyl methacrylate) (PU/PMMA) system, the partitioning of unreacted methyl methacrylate monomer (MMA) is studied in the late stages of its polymerization, simulated by incorporating controlled amounts of MMA in otherwise fully cured simultaneous interpenetrating networks (SIN) samples. Glass transitions temperatures (T,) were determined using dynamic mechanical spectroscopy and differential scanning calorimetry as a function of MMA content of the SINs. The lowering of T, in each phase due to the plasticization effect of MMA is used to calculate a plasticization coefficient for each phase, finally allowing calculation of the partition coefficient of MMA between the two phases. It is found that the MMA monomer distributes itself almost uniformly across the two phases of the current SIN system, leading to speculation as to the locus of late SIN polymerization.
SYNOPSISSemi-interpenetrating polymer networks based on two elastomers, cis-1,4-polyisoprene (PI) and thermoplastic polyurethane elastomers ( TPUs ) were prepared in varying compositions. The PI component was cross-linked using peroxide initiators. Modulus and mechanical properties were investigated as a function of composition and temperature. Slight synergisms were observed in mechanical properties, particularly for compositions containing 10% PI by weight. Little or no molecular mixing is shown by differential scanning calorimetry (DSC) for these two-phase materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.