Textural properties, water-holding capacity, and color characteristics of alkali-extracted chicken dark meat have been studied. Alkali extraction was carried out at 4 different pH values (10.5, 11.0, 11.5, and 12.0). At higher pH of extraction, cooking loss and water loss were found to be significantly decreased (P < 0.05). The lightness (L* value) of the recovered samples treated at higher pH was found to be significantly lower (P < 0.05). Whiteness of uncooked samples also decreased significantly at higher extraction pH values. Protein samples extracted at higher pH values were found to be harder, and the maximum (4,956 g of force) value was shown by samples prepared at pH 11.5. Chewiness values were significantly increased (P < 0.05) for protein samples extracted at pH values of 11.5 and 12.0. Dynamic viscoelastic behavior of samples was assessed in the temperature range of 7 to 100 degrees C. The dynamic viscoelastic behavior of raw chicken dark meat as revealed by storage modulus indicated considerable gel-forming ability. The maximum storage modulus (G') value of 439 kPa was measured at 66.7 degrees C. Storage modulus was found to decrease for the recovered protein samples and be lowest at higher pH values. However, the recovered protein samples did show substantial gel-forming ability when stored with cryoprotectants. Tan delta values denoted 2 clear transitions for raw dark meat; however, only 1 major transition at 50.1 degrees C was evident for pH-treated samples, probably reflecting the loss of collagen in processing. In conclusion, this process of protein recovery may offer the possibility to use the underused poultry resources for preparation of functional foods.
Chicken dark meat has been considered as a major underused commodity due to the increasing demand for further-processed breast meat products. One option to increase the utilization of chicken dark meat is to extract myofibrillar proteins and separate them from fat and pigments to enhance their application for the preparation of further-processed meat products. The objective of the current study was to determine the effect of pH, in the range of 10.5 to 12.0, on the alkaline solubilization process of chicken dark meat. Aspects studied were the effect of the alkali-aided process on protein content, lipid composition, lipid oxidation, and color characteristics of the extracted meat. Each experiment and each assay were done at least in triplicate. Lipid content of the extracted meat showed a 50% reduction compared with the chicken dark meat. Neutral lipids were reduced by 61.51%, whereas polar lipids were not affected by the alkali treatments. There was a higher amount of TBA reactive substances observed in the extracted meat compared with chicken dark meat, indicating that extracted meat was more susceptible to oxidation. Long-chain polyunsaturated fatty acids (22:4n-6, 20:3n-3, 20:5n-3, 22:5n-3, and 22:6n-3), which were detected only in the polar lipids, were responsible for increasing lipid oxidation susceptibility of extracted meat compared with chicken dark meat. Alkali-aided extraction of chicken dark meat lightened the color of the meat. The redness, yellowness, and total heme pigments in extracted meat significantly decreased by 83, 11, and 53%, respectively, compared with chicken dark meat. Even though this process did not remove polar lipids, based on our early findings, the extracted meat had considerable physicochemical and textural properties for product preparation compared with those of raw dark meat. Hence, alkali recovery of protein can be considered a potentially useful method to increase the utilization of dark chicken meat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.