Soil conditions, leading to iron deficiency or toxicity, are widespread in nature. Our objective was to study the effect of Fe supply, ranging from complete deficiency to excess, on growth and on some photosynthetic indices of pea plants. Both iron deficiency and toxicity decreased shoot and root growth. Complete deficiency resulted in a lower shoot/root ratio and a higher content of dry biomass per unit of fresh biomass in roots, while iron excess led to higher content of dry biomass per unit of fresh biomass in shoot. Complete deficiency was also characterized by low chlorophyll and carotenoid content, elevated ratios of chlorophyll a/chlorophyll b and carotenoids/chlorophylls, a drop of photosynthetic rate per leaf area, and an increase of photosynthetic rate per chlorophyll. The stomatal resistance substantially increased, while the transpiration rate decreased. Smaller changes in stomatal resistance and transpiration rate, but not in photosynthetic rate per leaf area, were found under partial iron deficiency and under excess of iron. In the first case, the chlorophyll content decreased, while in the second it increased. The maximum efficiency of photosystem II was unaffected by iron supply. Even when no genetic or experimental differences existed, changes in growth, pigment content and photosynthesis due to variation of Fe supply depended on the type and severity of the imposed stress, as well as on the studied parameter. A combination of indices described better the effect of iron supply, especially when small differences were characterized.
Wheat reduced height (Rht) genes encode modified DELLA proteins, which are gibberellin insensitive, accumulate under stress, restrain growth and affect plant stress response. The seedling reaction to soil water deficit regarding leaf gas exchange and chlorophyll fluorescence was compared in near-isogenic lines carrying the alleles Rht-B1a (tall), Rht-B1b (semi-dwarfing) and Rht-B1c (dwarfing) and was related to leaf water content and anatomy. Under drought, Rht-B1c line was characterized by less decreased CO 2 assimilation, delayed non-stomatal limitation of photosynthesis and higher instantaneous water use efficiency. The functional state of its photosynthetic apparatus was better preserved as evidenced by the less decreased actual quantum yield (Φ PSII ) and potential maximum quantum yield (F v /F m ) of PSII, and the less increased quantum yield of non-regulated energy dissipation (Φ NO ). Rht-B1b line also tended to perform better than RhtB1a, but differences were less pronounced. Although the leaves of both dwarf lines were smaller, thicker and more pubescent, their water content was not higher in comparison with the tall line. Nevertheless, in Rht-B1c, leaf thickness was less decreased and mesophyll cells were less shrunk under drought. The more effective performance of the photosynthetic machinery of dwarf lines under water deficit could be explained by a combination of morpho-anatomical and metabolic characteristics.
Water deficiency is a major constraint to wheat productivity in drought prone regions. The wheat DELLA‐encoding height‐reducing genes (Rht) are associated with significant increase in grain yield. However, the knowledge of their benefit in dry environments is insufficient. The objective of the study was to examine the effect of induced drought on leaf water content, level of oxidative stress, cell membrane stability, accumulation of osmoprotectants and activity of some antioxidant enzymes in wheat near‐isogenic lines carrying the alleles Rht‐B1b (semidwarfing) and Rht‐B1c (dwarfing) in comparison with the tall control Rht‐B1a. Six‐day‐long water deprivation was imposed at seedling stage. Plants carrying Rht‐B1c and, to a lesser extent, those carrying Rht‐B1b performed better under stress compared with Rht‐B1a in terms of more sustained membrane integrity, enhanced osmoregulation and better antioxidant defence. These differential responses could reflect pleiotropic effects of the Rht‐B1 gene associated with the accumulation of the mutant gene product, that is, altered DELLA proteins, or might be related to allelic variations at neighbouring loci carrying candidate genes for proteins with a major role in plant water regulations and stress adaptation. These findings might be of importance to breeders when introducing Rht‐B1 alleles into wheat cultivars designed to be grown in drought liable regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.