The inverse problem on remote determination of physical-mechanical parameters of thin plane tunnel elastic inclusions with variable thickness is considered. It is assumed that mechanical properties of non-homogeneity and matrix differ insignificantly in comparison with relative thickness of non-homogeneity. Elastic longitudinal waves are sounding waves, and the unknown parameters are defined according to the scattering amplitudes of these waves in the Fraunhofer zone.The work, on the example of 2D problem of elasticity theory, presents the algorithm for finding the Lame moduli, density and geometric parameters of thinwalled elastic plane flaws with variable thickness, that are in elastic matrix under conditions of ideal contact. Similar inverse problems of elastic wave scattering on the cracks, crack-like inclusions and large-rigidity inclusions were considered in Refs. [1][2]. This paper studies the case of a weak non-homogeneity, i.e. it is assumed, that rigidity of inclusion insignificantly differs from that of a matrix in comparison with small parameter ε, which characterizes the relative thickness of a flaw. On such an assumption, when elastic system is under condition of antiplane shear, the inverse problem of scattering was analyzed in [3].Let in homogeneous elastic unlimited medium with Lame moduli , λ µ and density ρ , under conditions of ideal contact, there be a thin-walled elastic inclusion with parameters 0 0 0 , , λ µ ρ , that occupies the region { 1
Створено математичну модель динамічної поведінки тонкого металічного включення чи прошарку у п'єзоелектричному середовищі за дії на композит усталених навантажень поздовжнього зсуву. На межі включення і матриці виконуються умови ідеального механічного контакту та рівність нулю електричного потенціалу. Модельовано за допомогою апарату теорії сингулярних збурень. Ключові слова: п'єзокерамічне середовище, металічне включення, динамічна взаємодія, теорія сингулярних включень.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.