Relay (or remote) synchronization between two not directly connected oscillators in a network is an important feature allowing distant coordination. In this work, we report a systematic study of this phenomenon in multiplex networks, where inter-layer synchronization occurs between distant layers mediated by a relay layer that acts as a transmitter. We show that this transmission can be extended to higher order relay configurations, provided symmetry conditions are preserved. By first order perturbative analysis, we identify the dynamical and topological dependencies of relay synchronization in a multiplex. We find that the relay synchronization threshold is considerably reduced in a multiplex configuration, and that such synchronous state is mostly supported by the lower degree nodes of the outer layers, while hubs can be de-multiplexed without affecting overall coherence. Finally, we experimentally validated the analytical and numerical findings by means of a multiplex of three layers of electronic circuits.
We explore the relation between the topological relevance of a node in a complex network and the individual dynamics it exhibits. When the system is weakly coupled, the effect of the coupling strength against the dynamical complexity of the nodes is found to be a function of their topological role, with nodes of higher degree displaying lower levels of complexity. We provide several examples of theoretical models of chaotic oscillators, pulse-coupled neurons and experimental networks of nonlinear electronic circuits evidencing such a hierarchical behavior. Importantly, our results imply that it is possible to infer the degree distribution of a network only from individual dynamical measurements.
We introduce Ordinal Synchronization (OS) as a new measure to quantify synchronization between dynamical systems. OS is calculated from the extraction of the ordinal patterns related to two time series, their transformation into D-dimensional ordinal vectors and the adequate quantification of their alignment. OS provides a fast and robust-to noise tool to assess synchronization without any implicit assumption about the distribution of data sets nor their dynamical properties, capturing in-phase and anti-phase synchronization. Furthermore, varying the length of the ordinal vectors required to compute OS it is possible to detect synchronization at different time scales. We test the performance of OS with data sets coming from unidirectionally coupled electronic Lorenz oscillators and brain imaging datasets obtained from magnetoencephalographic recordings, comparing the performance of OS with other classical metrics that quantify synchronization between dynamical systems.
We investigate the existence of an optimal interplay between the natural frequencies of a group of chaotic oscillators and the topological properties of the network they are embedded in. We identify the conditions for achieving phase synchronization in the most effective way, i.e., with the lowest possible coupling strength. Specifically, we show by means of numerical and experimental results that it is possible to define a synchrony alignment function J(ω,L) linking the natural frequencies ω of a set of non-identical phase-coherent chaotic oscillators with the topology of the Laplacian matrix L, the latter accounting for the specific organization of the network of interactions between oscillators. We use the classical Rössler system to show that the synchrony alignment function obtained for phase oscillators can be extended to phase-coherent chaotic systems. Finally, we carry out a series of experiments with nonlinear electronic circuits to show the robustness of the theoretical predictions despite the intrinsic noise and parameter mismatch of the electronic components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.