The ruminal microbiome of cattle plays an important role not only in animal health and productivity but also in food safety and environment. Microbial profiles of rumen fluid obtained from dairy cows fed on three different fiber/starch diet compositions were characterized. Tagged 16S rRNA gene pyrosequencing and statistical analysis revealed that the dominant ruminal bacteria shared by all three sample groups belonged to phyla Bacteroidetes, Firmicutes, and Proteobacteria. However, the relative abundance of these bacterial groups was markedly affected by diet composition. In animals fed with a high fiber diet, the fibrolytic and cellulolytic bacteria Lachnospiraceae, Ruminococcaceae, and Fibrobacteraceae were found in highest abundance compared with animals fed other diets with lower fiber content. The polysaccharide-degrading Prevotellaceae and Flavobacteriaceae bacteria were most abundant in the rumen of cows fed on diet with the highest starch content. These data highlight the ruminal microbiome's ability to adapt to feed composition and also provide a basis for the development of feed formulation systems designed to improve livestock productivity.
The threshold for heat stress on milk yield of Holstein crossbreds under climatic conditions in Thailand was investigated, and genetic effects of heat stress on milk yield were estimated. Data included 400,738 test-day milk yield records for the first 3 parities from 25,609 Thai crossbred Holsteins between 1990 and 2008. Mean test-day milk yield ranged from 12.6 kg for cows with <87.5% Holstein genetics to 14.4 kg for cows with ≥93.7% Holstein genetics. Daily temperature and humidity data from 26 provincial weather stations were used to calculate a temperature-humidity index (THI). Test-day milk yield varied little with THI for first parity except above a THI of 82 for cows with ≥93.7% Holstein genetics. For third parity, test-day milk yield started to decline after a THI of 74 for cows with ≥87.5% Holstein genetics and declined more rapidly after a THI of 82. A repeatability test-day model with parities as correlated traits was used to estimate heat stress parameters; fixed effects included herd-test month-test year and breed groups, days in milk, calving age, and parity; random effects included 2 additive genetic effects, regular and heat stress, and 2 permanent environment, regular and heat stress. The threshold for effect of heat stress on test-day milk yield was set to a THI of 80. All variance component estimates increased with parity; the largest increases were found for effects associated with heat stress. In particular, genetic variance associated with heat stress quadrupled from first to third parity, whereas permanent environmental variance only doubled. However, permanent environmental variance for heat stress was at least 10 times larger than genetic variance. Genetic correlations among parities for additive effects without heat stress considered ranged from 0.88 to 0.96. Genetic correlations among parities for additive effects of heat stress ranged from 0.08 to 0.22, and genetic correlations between effects regular and heat stress effects ranged from -0.21 to -0.33 for individual parities. Effect of heat stress on Thai Holstein crossbreds increased greatly with parity and was especially large after a THI of 80 for cows with a high percentage of Holstein genetics (≥93.7%). Individual sensitivity to heat stress was more environmental than genetic for Thai Holstein crossbreds.
The abilities of isolates to survive and be active in anaerobic and aerobic conditions rendered them to be active in cattle's rumen. Their biomass could be produced in bulk and used as feed supplement for aflatoxin detoxification in dairy cattle.
Significance and Impact of the Study: This study demonstrates that yeasts isolated from the ruminal fluid of dairy cattle can utilize lactic acid as a carbon and energy source for growth. The isolated yeasts can be used as probiotic supplements for dairy cattle that are fed highly concentrated diets to reduce ruminal lactic acid production.
AbstractRuminal organic acid production, especially lactic acid, can be modified by feeding cattle highly concentrated diets, which have been shown to adversely affect dairy cattle health. Therefore, the use of lactic acid-utilizing organisms is considered to be a potential method for controlling lactic acid levels. This study was conducted to isolate and identify lactic acid-utilizing yeasts from the ruminal fluid of dairy cattle and to determine the specific growth rate and generation time when using lactic acid as a carbon source instead of glucose. Seventeen yeast isolates were examined in this study. Yeasts isolated from dairy cattle that were fed a high cassava pulp diet (HCP) had higher specific growth rates and shorter generation times than yeasts isolated from dairy cattle that were fed a high-concentrate diet (HC) and a mixed diet (M). The three most effective yeasts in terms of specific growth rate and generation time were Pichia kudriavzevii, Candida rugosa and Kodamaea ohmeri, with 99, 100 and 99% nucleotide identities, respectively. These three isolates could be used as potential probiotics in dairy cattle diets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.