BackgroundRice plant growth is comprised of distinct phases, such as vegetative, reproductive, grain filling and maturity phases. In these phases synthesis and availability of primary and secondary metabolites including volatile organic compounds (VOC’s) is highly variable. In scented rice, aroma volatiles are synthesized in aerial plant parts and deposited in mature grains. There are more than 100 VOCs reported to be responsible for flavor in basmati rice. It will be interesting to keep track of aroma volatiles across the developmental stages in scented rice. Therefore, the aroma volatiles contributing in aroma with special reference to the major compound 2 acetyl-1-pyrroline (2AP) were screened at seven developmental stages in scented rice cultivars Basmati-370 and Ambemohar-157 along with non-scented rice cultivar IR-64 as a control following HS-SPME-GC-MS method. In addition, the expression levels of key genes and precursor levels involved in 2AP biosynthesis were studied.ResultsThe study indicated that volatilome of scented rice cultivars is more complex than non-scented rice cultivar. N-heterocyclic class was the major distinguishing class between scented from non-scented rice. A total of 14 compounds including, 2AP were detected specifically in scented rice cultivars. Maximum number of compounds were synthesized at seedling stage and decreased gradually at reproductive and maturity. The seedling stage is an active phase of development where maximum number green leaf volatiles were synthesized which are known to act as defense molecules for protection of young plant parts. Among the 14 odor active compounds (OACs), 10 OACs were accumulated at higher concentrations significantly in scented rice cultivars and contribute in the aroma. 2AP content was highest in mature grains followed by at booting stage. Gene expression analysis revealed that reduced expression of betaine aldehyde dehydrogenase 2 (badh2) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and elevated level of triose phosphate isomerase (TPI) and Δ1-Pyrolline-5-carboxylic acid synthetase (P5CS) transcript enhances 2AP accumulation.ConclusionsMost diverse compounds were synthesized at seedling stage and OACs were accumulated more at flowering followed by seedling stage. Distinct accumulation pattern exists for 2AP and other aroma volatiles at various developmental stages. The study revealed the mechanism of 2AP accumulation such that 2AP in mature grains might be transported from leaves and stem sheath and accumulation takes place in grains.Electronic supplementary materialThe online version of this article (doi:10.1186/s12284-016-0113-6) contains supplementary material, which is available to authorized users.
Rice is the staple food of around 3 billion people, most of them in Asia which accounts for 90% of global rice consumption. Aromatic rices have been preferred over non-aromatic rice for hundreds of years. They have a premium value in national as well as international market owing to their unique aroma and quality. Many researchers were involved in identifying the compound responsible for the pleasant aroma in aromatic rice in the 20th century. However, due to its unstable nature, 2-acetyl-1-pyrroline (2AP) was discovered very late, in 1982. Buttery and co-workers found 2AP to be the principal compound imparting the pleasant aroma to basmati and other scented rice varieties. Since then, 2AP has been identified in all fragrant rice (Oryza sativa L.) varieties and a wide range of plants, animals, fungi, bacteria and various food products. The present article reviews in detail biochemical and genetic aspects of 2AP in living systems. The site of synthesis, site of storage and stability in plant systems in vivo is of interest. This compound requires more research on stability to facilitate use as a food additive. © 2016 Society of Chemical Industry.
Aroma volatiles in Basmati-370, Ambemohar-157 (non-basmati scented), and IR-64 (non-scented) rice cultivars were qualitatively and quantitatively analyzed at vegetative and maturity stages to study their differential accumulation using headspace solid-phase microextraction, followed by gas chromatography mass spectrometry (HS-SPME-GCMS) with selected ion monitoring (SIM) approach. In addition, expression analysis of major aroma volatile 2-acetyl-1-pyrroline (2AP)-related genes, betaine aldehyde dehydrogenase 2 (badh2) and Δ(1)-pyrolline-5-carboxylic acid synthetase (P5CS), were studied by real-time PCR. Maximum number of volatiles recorded at vegetative (72-58) than at mature stage (54-39). Twenty new compounds (12 in scented and 8 in both) were reported in rice. N-containing aromatic compounds were major distinguishing class separating scented from non-scented. Among quantified 26 volatiles, 14 odor-active compounds distinguished vegetative and mature stage. Limit of detection (LOD) and limit of quantification (LOQ) for 2AP was 0.001 mg/kg of 2AP and 0.01 g of rice, respectively. 2AP accumulation in mature grains was found three times more than in leaves of scented rice. Positive correlation of 2AP with 2-pentylfuran, 6-methyl-5-hepten-2-one, and (E)-2-nonenal suggests their major role as aroma contributors. The badh2 expression was inversely and P5CS expression was positively correlated with 2AP accumulation in scented over non-scented cultivar.
Banana is an important fruit crop in the tropics and subtropics; however, limited information on biomarkers and signature volatiles is available for selecting commercial cultivars. Clonal fidelity is a major contributor to banana yield and aroma; however, there are no useful biomarkers available to validate clonal fidelity. In this study, we performed the molecular profiling of 20 banana cultivars consisting of diploid (AA or AB) and triploid (AAA or AAB or ABB) genomic groups. We screened 200 molecular markers, of which 34 markers (11 RAPD, 11 ISSR, and 12 SSR) yielded unequivocally scorable biomarker profiles. About 75, 69, and 24 allelic loci per marker were detected for RAPD, ISSR, and SSR markers, respectively. The statistical analysis of molecular variance (AMOVA) exhibited a high genetic difference of 77% with a significant FST value of 0.23 (p < 0.001). Interestingly, the UBC-858 and SSR CNMPF-13 markers were unique to Grand Nain and Ardhapuri cultivars, respectively, which could be used for clonal fidelity analysis. Furthermore, the analysis of banana fruit volatilome using headspace solid-phase microextraction-gas chromatography-tandem mass spectrometry (HS-SPME-GCMS) revealed a total of fifty-four volatile compounds in nine banana cultivars with 56% of the total volatile compounds belonging to the ester group as the significant contributor of aroma. The study assumes significance with informative biomarkers and signature volatiles which could be helpful in breeding and for the authentic identification of commercial banana cultivars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.