We investigate the transition radiation on a periodically deformed interface between two dielectric media. Under the assumption that the dielectric permittivities of the media are close, a formula is derived for the spectral-angular distribution of the radiated energy in the general case of a nonstatic profile function for the separating boundary. In particular, the latter includes the case of surface waves propagating along the boundary. The numerical examples are given for triangular grating and for sinusoidal profile. We show that instead of a single peak in the backward transition radiation on a flat interface, for periodic interface one has a set of peaks. The number and the locations of the peaks depend on the incidence angle of the charge and on the period of the interface. The conditions are specified for their appearance.
An X-ray diffraction method is developed for the determination of the distribution of temperature and interplanar spacing in a single-crystal plate. In particular, the temperature and the interplanar spacing differences in two different parts of a quartz single crystal of X-cut are experimentally determined depending on the value of the temperature gradient applied perpendicularly to the reflecting atomic planes (10 " 1 11). The temperature distribution along the direction perpendicular to the reflecting atomic planes (10 " 1 11) and the interplanar spacing distribution of atomic planes (10 " 1 11) are determined as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.