The Coriolis effect on the first bending and first torsional frequencies of flat rotating low aspect ratio cantilever plates has been investigated using finite element method. The cantilever plate has been modelled using plane triangular shell elements with three nodes and eighteen degrees of freedom. Three typical skew angles (0, 45, and 90 degrees) and two aspect ratios (1 and 2) are considered in the analysis. In addition to the Coriolis effect other effects, namely the geometric stiffness and the supplementary stiffness, have been considered. The mass and stiffness matrices have been derived using area coordinates. It has been found that the effect of including Coriolis effect is to lower the first two frequencies. This effect is negligible when the skew angle is 90 degrees. In the other two cases, skew of 0 and 45 degrees, there is a noticeable effect on the first torsional mode frequency when the aspect ratio is unity and on the first bending mode frequency when the aspect ratio is 2. An increase in the Coriolis effect is observed when the aspect ratio is increased from 1 to 2, with the skew angles of 0 and 45 degrees and a decrease when the skew angle is 90 degrees. The difference between the two frequencies (with and without Coriolis effect) becomes more and more noticeable as the rotational speed increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.